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Abstract 
 
 Marine cyanobacteria in the genus Synechococcus are widely distributed and 
contribute significantly to global primary productivity. In many parts of the ocean their 
growth is limited by a lack of iron, an essential nutrient that is virtually insoluble in 
seawater. To overcome this, Synechococcus have evolved a number of strategies to 
acquire iron. Gene distribution, metagenomics and a novel immunological flow 
cytometry assay in the Costa Rica Upwelling Dome were used to estimate the importance 
of Fe stress. Genomic and metagenomic measures suggest that iron limitation is, 
paradoxically, more severe in coastal and upwelling areas than in the open ocean, where 
iron is less abundant. A serological assay found significant differences in the vertical 
distribution of the Fe stress protein IdiA over just a few meters. 
 Despite average surface ocean iron concentrations of just 0.07 nM, most marine 
oligotrophic cyanobacteria lack iron-binding siderophores that are present in many 
heterotrophic marine bacteria. Siderophores are widely distributed in the surface ocean 
and compose an important portion of the pool of natural ligands that bind >99% of all 
soluble Fe. In bottle incubations from the Sargasso Sea we found the addition of Fe 
complexed to an excess of the siderophore desferrioxamine B (DFB) limited 
Synechococcus growth and stimulated the growth of heterotrophic bacteria in a 
concentration dependent manner. Laboratory work revealed that excess DFB decreased 
Synechococcus growth beyond Fe-limited controls at concentrations as low as 20-40 nM. 
The inhibition was aggravated by light but it could be reversed by the addition of Fe. The 
DFB inhibition could not be explained by thermodynamic or kinetic models of Fe’ or co-
limitation with other metals. DFB may interact with some aspect of cellular physiology to 
directly inhibit cyanobacterial growth.  
 
 
 
This thesis was co-supervised by Eric A. Webb (Associate Professor of Biology at the 
University of Southern California) and Sallie W. Chisholm (MIT Professor of Civil and 
Environmental Engineering and Biology). 
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 Marine cyanobacteria have changed the composition earth’s surface more than 

probably any other group of organisms (Kasting and Siefert, 2002). The evolution of 

oxygenic photosynthesis in the ancestors of cyanobacteria 2.7Ga altered the chemistry of 

sulfur and iron (Fe) the ocean and within 400-500 million years oxygenated our 

atmosphere, paving the way for all eukaryotic life (Canfield et al., 2000; Kump, 2008). 

Cyanobacteria continue to influence the composition of our atmosphere, consuming 

carbon dioxide implicated in anthropogenic climate change. Their initial oxygenation of 

the earth’s oceans dramatically decreased the availability of some metals cyanobacteria 

had come to rely on as cofactors, in particular Fe (Saito et al., 2003).  

 Although Fe is the fourth most abundant element in the earth’s crust (Lide, 2009) 

it is virtually insoluble in oxygenated seawater, average dissolved Fe concentrations in 

the surface ocean are just 0.07nM, Figure 1A (Johnson et al., 1997). The residence time 

of Fe in the ocean on the order of 300-500 years—short by oceanic timescales—less than 

the transit time of a parcel of water due to thermohaline circulation (Bruland et al., 1994). 

The short residence time means that Fe concentration is controlled primarily by the Fe 

supply rate. Fe enters the ocean from wind-driven continental dust, the flux of aeolian Fe 

to the oceans is estimated at 32 Tg yr1, (Duce and Tindale, 1991); rivers and glaciers 

transport additional Fe that can be locally important (Poulton and Raiswell, 2002). 

Supply is higher in coastal areas and the subtropical North Atlantic, which receives dust 

from the Saharan Desert (Jickells et al., 2005), increasing surface Fe concentrations 

above those found in the subtropical north Pacific, Figure 1B (Wu and Boyle, 2002). The 

element has a nutrient-like profile in the water column, concentrations of total Fe are 
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Figure 1  Measured concentrations of Fe in the ocean. A. The concentration of Fe by depth from samples 
in the in the Pacific and the north Atlantic, the dataset is from Johnson et al. (1997).  B.  A compilation of 

surface  (<50 m) dissolved iron measurements from data aggregated in (Parekh et al., 2005).   
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depleted in the photic zone by biological demand from phytoplankton and bacteria 

(Pilson, 1998).  

 The biological and chemical reactions in the photic zone make Fe chemistry 

complex. Fe is present as colloids and in several soluble forms including in complexes 

with organic and inorganic ligands (Wu et al., 2001; Wu and Boyle, 2002; Hudson, 

2005). Soluble Fe(III) forms weak complexes with OH- and Cl- and stronger complexes 

with a number of organic molecules. These organic ligands include components released 

during cell lysis, humic and fluvic acids in coastal areas, and siderophores (Fe-binding 

molecules secreted by microbes).  Measurements in the Atlantic and Pacific revealed that 

~99% of the dissolved Fe pool is bound to strong ligands  (Rue and Bruland, 1995; 

Witter and Luther, 1998). Although the ferric form predominates in the ocean, Fe (II) is 

abundant in anoxic basins like the Black Sea, approaching micromolar concentrations 

(Yemenicioglu et al., 2006). In oxygenated water Fe(II) is produced by the 

photochemical reduction of Fe(III) (Moffett, 2001). Fe(II) concentrations are higher in 

coastal water where dissolved organic matter enhances photochemical reduction or in 

cold water where the re-oxidation of Fe(II) is slow (Moffett, 2001). The speciation and 

redox chemistry of Fe control the amount of Fe available for uptake by phytoplankton. 

 Biological uptake of Fe is explained well by the free ion model, Figure 2 (Sunda 

and Guilliard, 1976; Morel et al., 1993; Hudson, 2005). The model’s premise is that an 

equilibrium exists between free metal ions in solution and metal ions bound to a cell’s 

transport enzymes. In this model the metal shifts between being bound to the ligand, 

existing in the free state and being bound to the cell’s transporter; the concentration of 
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K ρ Half-saturation constant, instantaneous uptake mol · vol− 1

ρ Instantaneous uptake rate mol · cell − 1 · s− 1

ρmax Maximal instantaneous uptake rate mol · cell − 1 · s− 1

kox Rate constant, Fe 2+ oxidation s− 1

khv Rate constant, photoreduction of FeY s− 1

kF eY
d Rate constant, FeY disassociation s− 1

kY
f Rate constant, Fe complexation by Y mol− 1s− 1
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f Rate constant, Fe complexation by L mol− 1s− 1
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d Rate constant for FeL disassociation s− 1

kin Rate constant, Fe cellular import from FeL s− 1

A.

B.
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Figure 2  A kinetic free ion model of Fe transport in the presence of a photolabile ligand, modified from 
Hudson and Morel (1990). Most Fe is bound to the ligand Y. Fe is released from the ligand by thermal 
disassociation and by photoreduction. The Disassociation of Fe(III)’ (denoted as Fe’ for simplicity) and the 
oxidation of Fe(II)’ to Fe‘ provide a pool of bioavailable Fe.  The Fe’ pool is bound by the cell’s transport 
ligand and imported into the cell. When the system is buffered by an excess of Y, the disassociation of Fe’ 
from the complex is greater than the collective uptake rate of cells and Fe’ remains constant.  Under 
these conditions the uptake rate of Fe’ is defined by the Michaelis–Menten type equation above.
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free ion controls the uptake rate. The free ion model explains the uptake of both toxic and 

nutrient metals in many phytoplankton (Hudson, 2005). The model has been used to 

describe Fe transport in the diatom Thalassiosira weissflogii and the cocolithophore 

Pleurochryis carterae (Hudson and Morel, 1990).  That work developed a conceptual and 

mathematical model for Fe uptake in phytoplankton. Although the model has been altered 

to incorporate new findings about Fe reduction in diatoms and the cyanobacterium 

Lyngbya majuscula (Shaked et al., 2005; Salmon et al., 2006; Morel et al., 2008) it 

provides an important framework for understanding Fe uptake. 

 Discoveries over the last twenty-five years have revealed that Fe limits the 

primary productivity of marine phytoplankton in areas as geographically varied as high 

nutrient low chlorophyll (HNLC) areas of the equatorial Pacific, the Southern Ocean and 

even coastal upwelling areas off Peru and California (Anderson and Morel, 1982; Brand 

et al., 1983; Martin and Fitzwater, 1988; Martin et al., 1991; Martin et al., 1994; Coale et 

al., 1996; Hutchins et al., 1998; Boyd and Law, 2001; Hutchins et al., 2002). Shipboard 

incubations (Martin et al., 1991) and large-scale Fe addition experiments at sea provided 

direct environmental evidence of Fe limitation. The first of these large-scale experiments 

was IronEx-I in 1993, the experiment spread 445 kg of Fe over a 64 km2 patch of the 

equatorial Pacific and observed chemical and biological response to the addition (Martin 

et al., 1994).  It was followed up in by IronEx-II in 1995, and a series of mesoscale Fe 

addition experiments in the Southern Ocean (SOIREE, EISENEX, SOFEX North, 

SOFEX South) (Boyd and Law, 2001; Boyd et al., 2000; Coale et al., 2004; Buesseler et 

al., 2004) and the subarctic North Pacific  (SEEDS, SERIES) (Tsuda et al., 2003; Boyd et 
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al., 2004). These experiments were important in confirming Fe limitation but they also 

generated a wealth of data about the influence of Fe on primary production, carbon 

export and phytoplankton community composition. The collective significance of this 

work was recently reviewed by Boyd et al. (2007) and de Baar et al.(2005). Both field 

and laboratory experiments have revealed that Fe limitation is an important nutrient that 

limits primary productivity. 

  

Synechococcus and Fe limitation  

 Phytoplankton in the genus Synechococcus are abundant and widely distributed 

across the world’s oceans (Zwirglmaier et al., 2008; Waterbury et al., 1986), including 

upwelling and oligotrophic regions where Fe limitation has been observed. (Saito et al., 

2005; Zwirglmaier et al., 2008). However, when the genome of the first marine 

Synechococcus strain (WH8102) was published it revealed that the strain lacked most 

known Fe stress genes (Palenik et al., 2003). This finding raised a number of questions. 

Does Synechococcus sp. WH8102 use Fe acquisition strategies that have yet to be 

identified? Did Fe limitation influence the evolution of genetic clades in Synechococcus 

(Rocap et al., 2002)? Have we simply overestimated the importance of Fe stress in the 

open ocean?  

  In the second chapter of this thesis I report the distribution of Fe stress genes in 

28 genomes of Synechococcus, Prochlorococcus and Synechocystis and in the Global 

Ocean Survey metagenomic data set. There do appear to be differences in the distribution 

of Fe stress genes and there is a general trend of more Fe stress genes in strains or 
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samples from coastal and upwelling regions. Although counterintuitive, this is consistent 

with findings of Fe limitation in coastal and upwelling areas (Hutchins et al., 2002; 

Hutchins et al., 2002; Fiedler, 2002). To examine Fe stress at a finer scale, I developed a 

technique that coupled flow cytometry with intracellular labeling of an Fe stress protein, 

allowing the detection of Fe stress in marine Synechococcus clades 3 and 5 (Rocap et al., 

2003). The method was tested in the Costa Rica Upwelling Dome revealing that 

Synechococcus with different Fe stress levels or serotypes were separated by just a few 

meters of depth (Chapter 2). The work suggests the genetic capacity to respond to Fe 

stress varies among strains and may influence the community composition of marine 

Synechococcus.   

 Fe stress proteins are regulated by monitoring the concentration of Fe(II) in the 

cytoplasm. The ferric uptake regulator (Fur) is the protein responsible for sensing Fe(II) 

and it acts as a DNA binding repressor in many bacteria (Bagg and Neilands, 1987; 

Andrews et al., 2003). There is evidence it acts as an autoregulator (Andrews et al., 1993) 

and in some pathogenic bacteria it even acts as an activator, both directly (Delany et al., 

2004) and through interactions with ncRNAs (Masse and Arguin, 2005).  Fur is a 

homodimer approximately 19 kDa in size, each subunit contains a histidine-rich Fe(II) 

binding site and a DNA pocket that binds a consensus DNA sequence (the Fe box)  -35 to 

-10 bp upstream, typically repressing transcription (Andrews et al., 2003). The 

recruitment of Fur to the Fe box can attract additional Fur dimers to divergent sites 

further upstream from the Fe box. When the concentration of Fe(II) in the cytoplasm 

drops the Fe(II) cofactor disassociates from Fur and the repressor diffuses from the Fe 
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box.  Fur also binds the divalent cations Co (II) and Mn(II) weakly (Bagg and Neilands, 

1987) and homologs of Fur regulate other metals including Mn(II) (Bellini and 

Hemmings, 2006) and Zn(II) (Gaballa and Helmann, 1998). 

 It is not yet clear how significant ncRNA’s are in the regulation of cyanobacterial 

Fe stress, but several ncRNA have been identified that interact with the Fur system 

including a Fur cis-antisense RNA (Hernandez et al., 2006) and isrR, a small RNA that 

influences the regulation of the photosystem protein IsiA (Kunert et al., 2003; Duhring et 

al., 2006). A group of small RNA’s termed cyanobacterial functional RNA (Yfr) were 

identified in Prochlorococcus and Synechococcus and many of the Yfr genes are 

differentially expressed under stress conditions (Axmann et al., 2005; Steglich et al., 

2008).  In E. coli there is a more complete model for post-transcriptional regulation, the 

bacterium decreases the production of Fe-containing proteins using the ncRNA RyhB. 

Under replete conditions Fur represses RyhB, but under Fe limitation RyhB is expressed, 

it binds to the transcripts if Fe containing genes and recruits the RNA degradosome 

complex to degrade itself and the targeted mRNA (Massé et al., 2007).   Such a universal 

system for regulating Fe containing genes has yet to be found in cyanobacteria but it is 

becoming evident that ncRNA’s play a role in the regulation of the Fe stress response. 

 Fe enters the cyanobacterial cell by crossing the outer membrane into the 

periplasm, and then the inner membrane into the cytoplasm.  Transport across the outer 

membrane can be achieved by passive diffusion through porins or active, energy-

dependent transport. In gram-negative bacteria the outer membrane is semi-porous so 

energy needed for active transport is transferred from ATPases on the inner membrane to 
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transporters on the outer membrane by the TonB-ExbB-ExbD system. In E. coli the TonB 

system powers a number of Fe-ligand import systems including FebA, FecA, FhuA 

(Andrews et al., 2003). Sequenced isolates from Synechococcus and Prochlorococcus, all 

lack the TonB system, based on Pfam assignment (Bateman et al., 2002) and Blast 

homology (Altschul et al., 1997).  This lack of TonB suggests a different strategy for Fe 

import in marine picocynaobacteria.  Rather than having a cell surface lined with high 

affinity receptors, picocyanobacteria may rely on passive transport into the periplasmic 

space. While it seems counterintuitive that cells in low nutrient environments would 

dispense with high affinity transport systems, replacing high affinity systems with more 

porins may have advantages. A cell surface covered with porins could act as a net 

allowing the diffusion of ions in while retaining the substrate binding components of 

ATP binding cassette (ABC) type transporters. A three-dimensional matrix of substrate 

binding proteins in the periplasm may potentially increase the number of receptors 

available for binding. It is surprising that the essential first step in Fe transport is 

unknown; the outer membrane transport system determines how quickly Fe can be taken 

up and even what forms of Fe are bioavailable, making it an important piece in the Fe 

acquisition puzzle. 

  More is known about the cytoplasmic transport of Fe in cyanobacteria. Fe(III) is 

thought to be transported by an ABC type transporter. The periplasmic component of this 

system is the Fe deficiency induced protein A (IdiA, known variously as FutA, HitA or 

SfuA) (Michel et al., 1996; Webb et al., 2001). IdiA is expressed in response to Fe 

limitation in marine Synechococcus (Webb et al., 2001; Rivers et al., 2009) and in 
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response to Fe limitation oxidative stress or limitation by Mn or Fe in freshwater 

Synechococcus (Michel et al., 1996; Michel et al., 1998; Yousef et al., 2003). It is also 

widely distributed, the three proteins in the Fe(III) transport system (IdiA, FutB and 

FutC) are found in all sequenced Synechococcus and Prochlorococcus genomes (Rivers 

et al., 2009).  In some freshwater cyanobacteria IdiA appears to play an additional role 

protecting photosystem II (Michel et al., 1998; Exss-Sonne et al., 2000; Lax et al., 2007). 

Synechococcus sp. PCC6301 and Synechocystis PCC6803 have paralogous copies of IdiA 

that go the thylakoid or the periplasm (Michel et al., 2001; Tolle et al., 2002) suggesting 

the protein participates in both photosystem II protection and transport. The designation 

may be somewhat plastic however, because inactivating of the periplasmic copy if IdiA 

in Synechocystis sp. PCC6803 results in the cytoplasmic copy being rerouted to the 

periplasm, partially compensating for the loss.  IdiA is an important photosystem and 

Fe(III) transport gene in cyanobacteria.  

 Free Fe(III) appears to be the predominant form of Fe transported into the cell by 

marine Synechococcus and Prochlorococcus however some evidence exists for Fe(II) and 

ligand-bound Fe(III) transport. FeoB is a cytoplasmic membrane bound ferrous Fe 

transporter (Kammler et al., 1993) found in Synechocystis sp. 6803 (Katoh et al., 2001) 

and three coastal marine Synechococcus spp. (Palenik et al., 2006; Rivers et al., 2009). 

There is evidence that some marine Synechococcus transport Fe-ligand complexes 

directly into the cell.  The production of siderophores has been reported in Synechococcus 

spp. PCC 7002 and WH8101 (Wilhelm and Trick, 1994; Ito and Butler, 2005), two 

strains isolated from eutrophic environments (Van Baalen, 1962; Waterbury et al., 1986). 
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However, sequenced marine Synechococcus and Prochlorococcus strains the lack of a 

TonB system required by ligand-siderophore transporters, this suggests that the active 

transport of siderophores, and by extension siderophore production, may be uncommon 

in marine picocyanobacteria. 

 Once Fe enters the cell it needs to be incorporated into proteins or stored. Fe 

storage proteins help keep Fe(II) concentrations low in the cytosol, preventing oxidative 

damage from hydroxyl radical formation (Andrews, 1998).  These storage proteins also 

act as reservoirs allowing the cell to survive Fe starvation and use transient Fe pulses by 

storing excess Fe during periods of “luxury uptake”.  Genes for the Fe storage proteins 

ferritin and bacterioferritin are both found in marine Synechococcus (Rivers et al., 2009).  

Ferritin and bacterioferritin are polymeric proteins that form a 24-mer complex capable 

of storing 2000~3000 atoms of Fe. The Fe is stored as oxidized ferrihydrite or amorphous 

hydroxyapatite (Andrews, 1998).  The oxidation required to store the Fe is catalyzed by a 

ferrioxidase center located on each subunit.  Bacterioferritins are functionally similar to 

ferritins but contain 12 heme moieties per complex. DpsA is another polymeric Fe 

storage protein termed a “mini-ferritin, but the monomeric form also binds DNA under 

stress conditions preventing oxidative damage (Andrews et al., 2003). A DpsA protein 

isolated from the marine cyanobacterium Trichodesmium erythraeum had the ability to 

bind both Fe and DNA (Castruita et al., 2006). Marine cyanobacteria vary in their 

complement of Fe storage proteins; all sequenced Prochlorococcus contain ferritin and/or 

bacterioferritin, while about half of the sequenced marine Synechococcus contain 

bacterioferritin. Even Fur itself has been implicated in Fe storage, the protein is found in 
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very high copy number  (2500-10 000 per cell) in Vibrio cholerae and E. coli and may 

buffer Fe(II). Fe storage is important cellular strategy for using transient increases in Fe 

and managing the oxidative effects of too much or too little intracellular Fe. 

 Large numbers of genes are differentially regulated in response to Fe limitation 

based on observations from microarray experiments in cyanobacteria (Singh et al., 2003) 

(Thompson, pers. com. 2009). While some of these genes are directly involved in Fe 

stress, the function of other genes is unknown. The gene products of some differentially 

regulated genes contain Fe and are down-regulated or substituted out for non-Fe 

containing proteins, presumably in an effort to reduce the Fe quota.  The replacement of 

ferredoxin by flavodoxin was one of the first substitutions discovered (Entsch and 

Smillie, 1972). Ferredoxin is an abundant [2Fe-2S] containing soluble electron carrier 

that shuttles electrons between photosystem I and the ferredoxin NADP+ oxidoreductase 

(FNR) (Bottin and Lagoutte, 1992). The substitution has been observed and used as a 

diagnostic of Fe stress in prokaryotic and eukaryotic phytoplankton (LaRoche et al., 

1996; Erdner and Anderson, 1999; Erdner et al., 1999).  Flavodoxin is an interesting 

example of quota reduction in cyanobacteria but it appears to be just one part of a larger 

global gene regulation response to Fe stress. 

 The genes involved in Fe acquisition and Fe stress alleviation can be grouped into 

four categories:  acquisition, storage, quota reduction and resistance to oxidative stress. 

Each category appears to be important to some marine Synechococcus spp. although there 

is considerable diversity between strains on the number and type of Fe stress genes 
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found. More work is needed to answer the basic question of how Synechococcus thrive in 

such low Fe environments. 

Siderophores  

 When I was developing the Fe biostress assay I began to use the siderophore 

desferrioxamine B (DFB) cause iron limitation by binding Fe, inducing IdiA expression 

in cultures of Synechococcus.  During these experiments cultures behaved differently 

than cultures that had been limited simply by removing Fe.  Rapid bleaching occurred 

and the expression of IdiA was not consistent, cells would not pellet—in short I observed 

a number of small but reoccurring differences. I followed up with additional experiments 

to characterize the effect of the siderophore, eventually expanding it into the work 

presented in Chapter 3.  That chapter examines the physiological effects of hydroxamate 

siderophores on Synechococcus and on a natural community of phytoplankton, finding 

that some physiological effects of the siderophore do not appear to be attributable to Fe 

binding alone. 

  There is increasing evidence that siderophores are significant in the marine 

environment. Marine siderophores are known to be produced by diverse types of oceanic 

bacteria including - and -proteobacteria (Vraspir and Butler, 2009) and two strains of 

coastal Synechococcus (Ito and Butler, 2005; Wilhelm and Trick, 1994). Recent work on 

the distribution of the siderophores desferrioxamine E and G in an Atlantic transect found 

that these two siderophores alone are were widely distributed at concentrations of 3-20 

pM, representing 0.2-4.6% of the total <0.2 m Fe pool (Mawji et al., 2008). A simple 

enrichment of coastal seawater led to the production of detectable amounts of 3 
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hydroxamate siderophores and 4 amphibactin siderophores (Gledhill et al., 2004). Our 

current knowledge of siderophore structure is largely limited by the bacterial strains we 

can isolate or enrich. Abundant but uncultured bacteria are likely to produce additional 

siderophores. 

 Siderophores bear some similarity to naturally occurring, chemically quantified 

Fe-binding ligands. Seawater contains Fe-binding ligands that have been operationally 

defined in some studies as belonging to two classes based on their conditional stability 

constants (Wu and Luther, 1995; Wu and Luther, 1995; Rue and Bruland, 1995). A 

higher affinity ligand, L1 is present predominantly in the photic zone (~0.44nM), while 

the weaker L2 class is present throughout the water column at a higher concentration 

(~1.5nM) (Rue and Bruland, 1995). In the subtropical North Pacific as much as 99.97% 

of the dissolved Fe pool was bound to L1 type ligands (Rue and Bruland, 1997) and 

mesoscale Fe addition increased the concentrations of these Fe binding ligands during 

IronEx-II (Rue and Bruland, 1996) Competitive ligand exchange has revealed that the L1 

ligand class has conditional stability constants similar to those of siderophores (Witter et 

al., 2000; Macrellis et al., 2001). The chemical similarities and the detection of 

siderophores in the marine environment suggest that some fraction of the organic ligand 

pool is comprised of siderophores. 

 Marine siderophores fall into several structural classes based on and binding 

moieties and hydrophobicity. The three predominant binding moieties are the 

hydroxamates
O

N

OH

, chatecholates 
HO OH

and -hydroxy carboxylates,
O OH

; 
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Figure 3  Siderophores produced by marine cyanobacteria. A. Amphiphilic marine siderophores that 
have been identified include marinobactins (Martinez et al. 2000) aquachelins (Martinez et al. 2000), 
amphibactins (Martinez et al. 2003), ochrobactins (Martin et al. 2006) and Synechobactins (Ito and Butler 
2005). B. Marine siderophores with photolabile  α-hydroxy carboxalte groups:  alterobactins, pseudoal-
terobactins (Kanoh et al. 2003), aerobactin (Haygood et al. 2003), petrobactin (Barbeau et al 2002), 
petrobactin-SO3 (Hickford et al. 2004) and vibrioferrin (Amin et al. 2007) C. The hydroxamate sidero-
phores desferrioxamine G (Martinez et al 2001) and putrebactin (Ledyard and Butler 1997), and the 
mixed class siderophore anguibactin (Lorenzo et al. 2004). Reprinted with permission from Vraspir and 
Butler (2009).
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hydroxamates are the most photo-stable (Barbeau et al., 2003). A siderophore can use any 

combination of the binding moieties to coordinate Fe(III) octahedrally, Figure 3 (Vraspir 

and Butler, 2009) A number of marine siderophores are amphiphilic, containing fatty acid 

tails, some examples include aquachelins, marinobactins, ochrobactins and 

synechobactins. (Vraspir and Butler, 2009). This tail can tether the siderophore to the cell 

surface, preventing loss by diffusion (Xu et al., 2002; Martinez et al., 2003; Martin et al., 

2006). We are just beginning to understand the role of siderophores in marine 

environment, but the structural diversity, abundance and distribution imply that these 

molecules are ecologically important. 

* * * 

 This thesis examines the response of Marine Synechococcus to Fe limitation and 

biological Fe-binding molecules, attempting to interpret findings in an ecological context. 

I use physiological, molecular and comparative genomic and metagenomic techniques in 

both laboratory and field populations of Synechococcus.  This mixture of approaches 

provides a fuller understanding of the Fe stress response in Synechococcus. I hope this 

work adds to a growing body of research on the importance of Fe and siderophores in the 

ocean.
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Summary

Marine Synechococcus are frequently found in envi-

ronments where iron (Fe) is a limiting nutrient. To

understand their capacity to respond to Fe stress,

we screened picoplankton genomes and the Global

Ocean Survey metagenome for known Fe stress

genes. Many open ocean strains of Synechococcus
lack most known genes for Fe stress, while coastal

and upwelling strains contain many, suggesting that

maintaining multiple Fe limitation compensation

strategies is not a selective advantage in the open

ocean. All genomes contained iron deficiency-

induced protein A (IdiA) and its complementary Fe3+

transport proteins. The ubiquity of IdiA was exploited

to develop an in situ Fe stress bioassay based on

immunolabelling and flow cytometry. As a test of field

applicability, we used the assay on natural Synecho-
coccus populations from one station in the Costa

Rica Upwelling Dome where total Fe ranged from

<0.08 to 0.14 nM in the upper water column. The bio-

assay found Fe stress in 5–54% of the population.

Based on our findings, we believe that when reactive

strains are present this assay can reveal environmen-

tal and clade-specific differences in the response of

Synechococcus to Fe stress.

Introduction

The picoplankter Synechococcus is abundant and eco-
logically important in regions ranging from ocean gyres to
upwelling zones where iron (Fe) can limit growth and
primary production (Coale et al., 1996; Field et al., 1998;
Hutchins et al., 1998; Behrenfeld and Kolber, 1999).
Despite its abundance, little is known about how Syn-
echococcus acquires Fe from the environment, or the
relative importance of the genes involved in Fe stress –
even the mechanism that first transports Fe through the
outer membrane is undefined (Webb et al., 2001). As Fe
is a cofactor in many photosynthetic and nitrogen metabo-
lism enzymes (Dean et al., 1993; Geider and La Roche,
1994; Lin and Stewart, 1998), it is a key element with the
potential to both directly and indirectly control primary
production by some of the earth’s most abundant
phototrophs.

Cyanobacteria can cope with Fe limitation by using
high-affinity transporters to acquire more Fe (Katoh et al.,
2001), storing Fe when it is abundant (Keren et al., 2004),
substituting flavodoxin for ferredoxin to reduce Fe quota
(Leonhardt and Straus, 1992), and reducing oxidative
damage that results from Fe deficiency (Park et al., 1999;
Michel et al., 2003). Synechococcus and many other
bacteria use the ferric uptake regulator (Fur) to sense
intracellular Fe2+ pools and regulate Fe stress genes
accordingly (Bagg and Neilands, 1987; Angerer et al.,
1992; Ghassemian and Straus, 1996; Andrews et al.,
2003). The breadth of compensation responses found in
cyanobacteria underscores the element’s importance to
their physiology.

A key response to Fe limitation in marine and freshwa-
ter Synechococcus is the upregulation of the gene idiA
(Michel et al., 1996; Webb et al., 2001). The IdiA family of
proteins has been the focus of previous Fe stress
research beginning with the identification of the IdiA
homologue SfuA in the heterotroph Serratia marcescens
(Angerer et al., 1990). Immunoblotting of IdiA has con-
firmed its expression under Fe limitation in various marine
cyanobacteria, including Trichodesmium sp. IMS 101,
Crocosphaera sp. WH8501 and Synechococcus spp.
WH8103 and WH7803 (Webb et al., 2001). The induced
IdiA protein has been detected in association with outer
membrane preparations from marine Synechococcus sp.
WH7803 suggesting a role in transport (Webb et al.,
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2001). In some freshwater strains, IdiA has a dual role,
both performing cellular Fe transport and protecting
photosystem II during Fe stress (Fulda et al., 2000; Tolle
et al., 2002). Synechocystis sp. PCC6803 has two paralo-
gous genes, slr0513 and slr1295, which encode proteins
found in the thylakoids and in the periplasmic space
respectively (Fulda et al., 2000; Tolle et al., 2002), and in
Synechococcus strains PCC6301 and PCC7942 these
IdiA proteins are found in both locations and are
expressed under Fe and Mn limitation (Michel et al., 1996;
1998; Michel and Pistorius, 2004). Microarray data with
Synechocystis sp. PCC6803 showed that in Fe-stressed
conditions the idiA paralogue associated with transport
(slr0513) was the 9th most induced gene, while the
thylakoid-associated IdiA homologue (slr1295) was not
upregulated (Singh et al., 2003). In contrast to freshwater
strains, the role of IdiA in marine Synechococcus has not
been definitively shown, but genomic and physiological
data suggest a primary role in Fe transport.

Here we present data showing the presence of defined
Fe stress genes in the genomes of Synechococcus and
Prochlorococcus and in the Global Ocean Survey (GOS)
metagenome (Rusch et al., 2007), which indicate that
genes for Fe3+ transport and DNA protection are prevalent
in Synechococcus, and that there are differences in the
complement of Fe stress genes found in coastal and open
ocean Synechococcus. The environmental and genomic
prevalence of IdiA support its value as a diagnostic
marker of Fe stress in Synechococcus and led us to
develop an IdiA-specific antiserum for quantitative detec-
tion of Fe stress in single cells using immunofluorescence
and flow cytometry. This bioassay was used to measure
the timing of IdiA expression in the laboratory and to
detect Fe stress in natural Synechococcus populations
from a station in the Costa Rica Upwelling Dome (CRD).

Results

Genomic and metagenomic survey

The genomes of 28 unicellular cyanobacteria, including
Prochlorococcus, Synechococcus and Synechocystis,
were screened for genes homologous to Fe stress genes
defined from the literature cited below (Table 1). Homol-
ogy was determined by blast search, gene alignment and
the construction of maximum likelihood trees with previ-
ous literature as a guide. This survey found many differ-
ences in the abundance and distribution of Fe stress
genes within the cyanobacterial picoplankton. The three
genes predicted to form a periplasmic binding protein-
dependent ABC transporter for Fe3+ (idiA, futB and futC)
(Katoh et al., 2001) co-occur in every genome, suggesting
a common function and method of Fe acquisition. Three
strains of marine Synechococcus (RS9917, WH7805 and

RCC307) contain two copies of idiA, suggesting possible
roles for the paralogous proteins in Fe transport and Fe
stress protection, as in Synechocystis sp. PCC6803 and
Synechococcus sp. PCC6301 (Michel et al., 2001; Tolle
et al., 2002). The capacity for Fe2+ acquisition encoded by
feoB (Kammler et al., 1993) is distributed more sporadi-
cally than Fe3+ genes, being found only in coastal
Synechococcus spp. WH5701, RS9917 and CC9311. In
Prochlorococcus and some Synechococcus strains, iron
storage under replete conditions is thought to be accom-
plished with ferritin and/or bacterioferritin, a 24-mer
protein capable of storing 2000–3000 Fe atoms by oxidiz-
ing Fe to ferrihiydrite or amorphous ferric phosphate
(Andrews et al., 1993; Keren et al., 2004). The distribution
of these Fe storage genes is complex; for example, Syn-
echococcus appears to primarily use bacterioferritin while
Prochlorococcus typically use ferritin, although some
strains have both storage systems and others have
neither. Many cyanobacteria reduce their Fe quota by
substituting flavodoxin for ferredoxin, which uses a flavin
mononucleotide cofactor rather than the Fe-containing
Fe-S cluster (Bottin and Lagoutte, 1992; La Roche et al.,
1995; Erdner et al., 1999). Flavodoxin, encoded by isiB, is
present in all Prochlorococcus but unexpectedly absent
in 64% of the marine Synechococcus genomes.

Iron deficiency reduces the efficiency of the photosys-
tem, generating free radicals during photosynthesis that
damage DNA. This is countered by the Fe and oxidative
stress-induced protein DpsA (Park et al., 1999; Michel
et al., 2003), present in 7 of 11 marine Synechococcus
genomes but largely absent from the Prochlorococcus
genomes. The gene encoding IsiA, a photosystem
I-associated stress protein (Burnap et al., 1993; Park
et al., 1999; Michel and Pistorius, 2004; Singh and
Sherman, 2007), is found in freshwater Synechococcus
and Synechocystis. We found an isiA homologue in some
coastal marine Synechococcus strains; these homo-
logues form a monophyletic cluster distinct from fresh-
water isiA, Prochlorococcus pcb genes (which bind
light-harvesting chlorophyll), and the pcbC cluster found
in other cyanobacteria (phylogenetic data not shown)
(Chen et al., 2005). These putative isiA genes may be
involved in Fe stress but their function must be deter-
mined experimentally. The pcb genes in Prochlorococcus
were not categorized because Fe stress-induced pcb
genes are paralogous and interspersed with constitutive
pcb genes, making it difficult to phylogenetically infer their
role in Fe stress (Bibby et al., 2003).

The metagenomes of open ocean and coastal sites in
the GOS were searched to estimate the abundance of Fe
stress genes in the environment. To estimate the number
of Fe stress genes per genome, the genes with best hits
to known Synechococcus genes were tallied from open
ocean and coastal environments (Fig. 1). These tallied
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genes were first normalized by length, then divided by the
mean normalized abundance of the eight single-copy
control genes used in Martiny and colleagues (2006). The
most abundant open ocean Synechococcus Fe stress
genes were the genes idiA, futB and futC at abundances
between 0.6 and 1 copy per genome. Genes with best hits

to bacterioferritin, flavodoxin and dpsA were found in
0.2–0.4 copy per genome, and feoB and ferritin were not
found. Coastal Synechococcus showed a similar pattern
with two exceptions: isiB was more abundant, found in 1.7
gene per genome, and idiA was less abundant, found in
less than 0.2 gene per genome. Extending this analysis to
genes found in the GOS data with best hits to Prochloro-
coccus, we found a more uniform distribution. Among
these genes, open ocean sites have 0.4–0.6 copy of idiA,
futB and futC, 0.6 copy of ferritin and 1.2 copy of isiB:
coastal sites have 0.5–0.8 copy of idiA, futB and futC, and
0.2–0.4 copy of ferritin and isiB. Prochlorococcus genes
from all sites have less than 0.1 copy of bacterioferritin
and no copies of feoB, or dpsA. It is important to note that
this analysis provides only an initial estimate of relative
gene presence in these regions as the metagenomic data
sampled a small number of Prochlorococcus genomes
and even fewer Synechococcus genomes (Rusch et al.,
2007).

Generation and testing of an IdiA antiserum

To develop an Fe stress assay focused on IdiA expres-
sion, we generated an antiserum against recombinant
IdiA from Synechococcus sp. WH8102 expressed in
Escherichia coli as described in Experimental procedures.
The removal of a predicted Synechococcus signal
sequence allowed for the expression of histidine-tagged
IdiA in the host strain E. coli strain EA38 (Fig. S1). Once
an antiserum had been produced against this protein, the
reactivity of the antibody was determined by immunoblot-
ting against a cell-free extract from Synechococcus sp.
WH8102. We confirmed that the antiserum was effective
for Western blot detection of IdiA using a titer of 1:175 000
without any detectable background bands (data not
shown).

Further experiments with other Synechococcus strains
determined that the antiserum was highly specific, as it
reacted only with Synechococcus from clades III and V
and with Synechococcus sp. WH8101 from clade VIII
(Fig. 2) (Rocap et al., 2002; Ahlgren and Rocap, 2006).
The antiserum was not cross-reactive with other Syn-
echococcus clades or Prochlorococcus marinus sp.
MED4 (data not shown). Non-specific banding typically
did not occur within clades III and V except for a faint
lower-molecular-weight band in Synechococcus spp.
WH7803 and WH8103 that co-occurred with the IdiA
band. Once the cross reactivity was determined, it was
necessary to test whether IdiA accumulates just in
response to Fe limitation and/or in response to more
general oxidative stress as well. Middle to late log phase
Synechococcus sp. WH7803 was exposed to 3 mM
hydrogen peroxide or 100 nM of the herbicide methyl
viologen, and IdiA accumulation was measured by densi-
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of each bar represents the total number of GOS reads that
correspond to the gene. The inset graph reports the normalized
abundance and standard error of the control genes.
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tometry on a Western blot. IdiA expression was compared
with Fe-replete cultures and a Fe-limited positive control
(Fig. 2C). Both oxidative treatments had slightly less IdiA
than the Fe-replete culture and 20–30% of the IdiA in
Fe-limited positive control, suggesting that oxidative
stress does not lead to IdiA accumulation.

Temporal and environmental expression of IdiA

An assay was developed to label IdiA in individual cells.
The assay requires heating then fixing the cells prior to
storage. The cell wall is then permeablized and IdiA is
labelled with a primary antibody, then a secondary anti-
body conjugated to a fluorophore for detection by flow
cytometry. To test the assay and determine the timing of
IdiA expression, the protein was measured in batch
cultures of Synechococcus sp. WH7803 by whole-cell
labelling and spot-checked with Western blotting (Fig. 3).

Fresh Fe+ (Fe-amended) and Fe- (Fe-omitted) media
was inoculated with a culture transitioning into Fe limita-
tion (cell density 1.2 ¥ 107 cells ml-1, k = 0.0185 h-1, from
regression of log-transformed fluorescence, R2 = 0.99).
The Fe+ culture contained 20 mM Fe while the Fe- culture
contained only the Fe present in the coastal seawater
used to prepare the media. To control for differences in
fixation and labelling, IdiA expression is reported as the
fluorescence of cells treated with IdiA antiserum divided
by the fluorescence of those treated with pre-immune
serum. The first two measurements of IdiA expression in
Fe+ and Fe- cultures, at 27 and 39 h, had a high fluores-
cence ratio of ~8. This IdiA persisted from the inoculating
culture for several days after the initial transfer, then
between 39 and 90 h the IdiA expression level dropped to
the baseline value of approximately 3.5 for both Fe+ and
Fe- cultures (Fig. 3B). By 114 h the expression of IdiA in
Fe- cultures had increased to an expression ratio of
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~7, while the Fe-replete cells remained at the baseline
expression ratio of ~3.5. Immunoblotting at the end of the
experiment confirmed this persistent differential expres-
sion. This expression pattern agrees with previous
Western blotting work on the timing of IdiA expression
(Webb et al., 2001).

The assay was also tested on a field sample collected
from the CRD, a cyclonic upwelling feature (Fiedler, 2002)
with a strong seasonal Synechococcus bloom that may be
limited by Fe (Franck et al., 2003) (Fig. 4). Station 13 near
the middle of the dome (09°30′N, 92°19′W), was sampled

on 25 July 2005 at 12:15 UTC (dawn). The station’s ther-
mocline, halocline and chlorophyll maximum were all at
15 m. The Fe concentration at station 13 was extremely
low, ranging from 0.08 to 0.14 nM in the upper 80 m.
Synechococcus were abundant, reaching a density of
9 ¥ 105 cells ml-1 at the surface and declining quickly
below the thermocline. Cells from 8, 15, 25 and 40 m were
subjected to the assay. Among these samples, 5–54% of
the population had a significantly greater fluorescence
(P < 0.05, using probability binning) after treatment with
the anti-IdiA antiserum compared with treatment with prei-
mmune serum alone. The proportion expressing IdiA and
the expression ratio (antiserum-treated fluorescence over
pre-immune serum-treated fluorescence, corresponding
to specific immunological detection of IdiA) mirrored
changes in Fe concentration directly. The histograms of
labelling at each depth reveal that the community is finely
structured in regard to its IdiA expression and/or reactivity.
For example, at 8 m there appear to be two subpopula-
tions of cells with cross-reactive IdiA. Just 7 m farther
down at the 15 m thermocline, cross-reactive IdiA
appears not to be expressed by any part of the population.
Below the thermocline at 25 m the community resembles
the 8 m assemblages.

Discussion

Genomes and metagenomics

There is considerable variation in the Fe stress genes
found in sequenced marine Synechococcus and Prochlo-
rococcus genomes. Interestingly, the genomes of open
ocean Synechococcus spp. WH7803 and RCC307 have
only idiA, futB, futC and dpsA while Synechococcus sp.
WH8102 lacks even dpsA. In contrast, the genomes
of coastal strains (e.g. Synechococcus spp. CC9311,
CC9902, WH5701, BL107 and RS9917) contain most of
the known Fe stress genes present in other cyanobacte-
ria. None of the sequenced open ocean strains (Synecho-
coccus spp. WH7803, WH7805, RCC307 or WH8102) are
from regions of predicted Fe limitation (Wu et al., 2000;
2001); therefore, our open ocean strains may not be uni-
versally representative. However, this pattern contrasts
sharply with Prochlorococcus, where every sequenced
strain – isolated from a Fe-limited regime or not – contains
Fe storage and substitution genes. The Fe stress gene
distribution in Prochlorococcus more closely resembles
that of coastal rather than open ocean Synechococcus.
Coastal Fe limitation has been observed in areas
including the California Current and the Peru Upwelling
(Hutchins et al., 1998; 2002; Bruland et al., 2001), sug-
gesting that Fe limitation exerts the most selective pres-
sure on Synechococcus near the coast or in upwelling
zones rather than in oligotrophic regions. This trend was
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Fig. 3. A. The growth of Synechococcus sp. WH7803 represented
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between 39 and 90 h may be an experimental artefact.
B. The expression of IdiA in cultures inoculated from Fe-limited
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the medium. The IdiA expression is reported as the green
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in (A), standard error was generally smaller than the symbols.
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seen more broadly for all metal transporters in a compari-
son of Synechococcus spp. CC9311 and WH8102
(Palenik et al., 2006). It is important to note that Synecho-
coccus is frequently more abundant in coastal settings if
not dominant when compared with Prochlorococcus
(Zwirglmaier et al., 2008), so these different trends in the
genomes could also be related to spatial niche partitioning
as well. More genomic data will likely help answer these
questions.

The GOS data reveal a similar but subtler pattern in
the distribution of Fe stress genes from coastal and open
ocean environments. Most open ocean Synechococcus

possess homologues to genes for Fe3+ transport, while a
smaller number possess homologues to genes for iron
storage, flavodoxin substitution, and the stress gene
dpsA. This smaller proportion possessing these addi-
tional genes may be adapted to transient Fe limitation. A
major difference between coastal and open ocean Syn-
echococcus is the abundance of isiB in coastal Synecho-
coccus. The capacity to intermittently reduce the cellular
Fe quota may reflect more rapidly fluctuating levels of Fe
in coastal areas. One unexpected result in these data is
the low abundance of idiA in coastal Synechococcus
despite the presence of futB and futC at frequencies
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A. The thermocline and halocline occur at depth of 15 m and the chlorophyll maximum coincides with the thermocline.
B. Fe concentration is very low ranging from < 0.08 to 0.14 nM; at 8 and 14 m Fe was below the daily detection limit of 0.08 nM; error bars
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antiserum to cells treated with the pre-immune control serum error bars represent standard error.
C. The histograms of fluorophore fluorescence at four depths. Each line is normalized so its highest point is equal to 100%; blue represents
the pre-immune sample, red the antiserum-treated sample and green portion of the antiserum-treated population with fluorescence statistically
distinct from the pre-immune control.
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similar to those in open ocean Synechococcus. This con-
trasts with the genomic data on idiA and may indicate
that the Fe stress assay described in this paper will be of
more limited use in coastal environments. The genomic
and metagenomic data for Prochlorococcus show a
similar and more uniform complement of Fe stress
genes, with homologues to the Fe3+ transport genes, fer-
ritin and flavodoxin. The number of Synechococcus
genes in the GOS is relatively small, in part because the
collection procedure removed phytoplankton larger than
0.8 mm (Rusch et al., 2007). The accurate assignment of
genes to a genus is also dependent on having represen-
tative samples of Synechococcus and Prochlorococcus
genes in the reference database (nr), which is an impor-
tant caveat of this analysis. Despite its limitations, the
GOS metagenome still provides a provisional estimate of
the importance of Fe stress genes in the genomes of the
picoplankton.

In this work, the environment where Synechococcus
genes or strains were found has been crudely divided into
‘coastal’ and ‘open ocean’, but in reality each environment
has complex chemistry and physics that influence which
Synechococcus strain is dominant at a given time. Yet,
this crude measure does appear to explain some of
the differences in the genomes and metagenome. For
example, many physiological differences have been
explained by habitat specialization within clades and
ecotypes, including light and temperature adaptation in
Prochlorococcus (Moore et al., 1998; Moore and Chish-
olm, 1999; Johnson et al., 2006). Genomic comparison in
Prochlorococcus showed that some niche partitioning
(e.g. for light) occurred earlier in evolution than adaptation
to particular nutrients (Kettler et al., 2007). In Synechoc-
occus, work on the core genomes has grouped many
strains into two subclusters, Subcluster 5.1A, containing
primarily clades II, III and IV, is characterized as being
adapted to stable environments, and Subcluster 5.2B
(clades I, V, VI, VIII and IX) is characterized as being more
adapted to variable environments (Dufresne et al., 2008).
The presence/absence pattern of Fe stress genes in the
genomes does not appear to correlate with the subclus-
ters, suggesting that specialization to Fe stress occurred
after the more general divergence between two types
of core genomes. The pattern of Fe genes is better
explained by the clade-specific community structure
observed in sampling across ocean biomes (Zwirglmaier
et al., 2008). Clades I/IV are found in temperate coastal
and continental shelf areas while clade II is a tropical/
subtropical counterpart to clades I/IV. These three clades
include four of the top six genomes ranked by Fe gene
abundance. In contrast, most genomes from the
oligotrophic clade III and the more generalist clades V, VI
and VII were from open ocean sites and had fewer Fe
stress genes.

Labelling assay

Both genomic and metagenomic data point to IdiA as a
good candidate for a Fe stress marker particularly in the
open ocean. We generated a marine Synechococcus-
specific IdiA antiserum to detect Fe stress in single cells
using flow cytometry. The antibody labelling of intracellu-
lar proteins followed by flow cytometry is routinely used for
eukaryotic cells but has not been widely used in bacteria
(Jacobberger et al., 1986; Koester and Bolton, 2000).
Intracellular proteins from cyanobacteria have been
labelled, but the results have not been measured quanti-
tatively with flow cytometry (Currin et al., 1990; Scanlan
et al., 1997; Lin et al., 1998; Collier and Campbell, 1999;
Toledo et al., 1999; Berman-Frank et al., 2001); con-
versely, flow cytometry has been used to measure surface
protein abundance in Synechococcus, but has not
been extended to measurements of intracellular proteins
(Campbell, 1988; 1993; Campbell and Iturriaga, 1988).
Coupling labelling with flow cytometry is an attractive tool
for measuring cellular stress markers because it is quan-
titative and it rapidly provides expression estimates for
thousands of individual cells. This approach is also of
great value when studying field populations because it
uses a small amount of biomass, approximately 104 cells,
and still generates data that can be analysed statistically.

The whole-cell labelling assay we developed is able to
detect IdiA expression in both laboratory cultures and field
populations where reactive clades are present. The sen-
sitivity and large sample size of the flow cytometer makes
it possible to differentiate two populations with slight dif-
ferences in IdiA expression using probability binning
(Roederer et al., 2001). The assay is also able to detect
IdiA expression when only a small portion of the popula-
tion is cross-reactive. One major limitation is that
the assay cannot distinguish non-reactive cells from
Fe-replete cells. As currently developed, this method is a
sensitive measure of Fe stress within clades III, V and VIII
of marine Synechococcus. Data on the global abundance
Synechococcus clades indicate that cross-reactive clade
III is abundant in oligotrophic regions (Zwirglmaier et al.,
2008). With additional antisera, the assay could also be
expanded to IdiA in more clades of Synechococcus or
other genes altogether.

Temporal and environmental expression

Synechococcus sp. WH7803 responds in vivo to both the
onset and alleviation of Fe stress by changing IdiA con-
centrations over 5 days with major changes in expression
occurring over 1–2 days. This coincides with the timing
and duration of dust pulses (Betzer et al., 1988) that are
an important source of Fe in the open ocean (Jickells
et al., 2005). The 1–2 day timescale for IdiA expression
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also acts as a biological averaging of the Fe stress
response that may be useful in the field because it damps
shorter-scale (e.g. diel) fluctuations in expression (Arm-
brust et al., 1989; Binder, 2000). The regulation of IdiA is
pronounced and occurs on a measurable, biologically
relevant timescale, making it an informative marker of
Fe stress in the environment.

The method was tested in the CRD, an area of seasonal
cyclonic upwelling with high phytoplankton biomass
(Fiedler, 2002). The upwelling is unique because it is
dominated by high concentrations of Synechococcus,
rather than eukaryotic phytoplankton, with densities of
Synechococcus in the surface of the CRD reaching
1.8 ¥ 106 cells ml-1 (Saito et al., 2005). These Synechoc-
occus populations may potentially be limited by Fe
(Franck et al., 2003).

When our field samples were collected, station 13 in the
CRD (Fig. 4) had the characteristic shallow thermocline
and large chlorophyll maximum described before
(Fiedler, 2002). The extremely low levels of Fe observed
(< 0.08–0.14 nM) are similar to those previously mea-
sured at the CRD (Franck et al., 2003). In this past study,
the addition of Fe seemed to relieve Fe limitation in the
microplankton community at the CRD, as evidenced by
an almost threefold increase in total cell number and
increases in the maximum potential uptake rates of silicic
acid and NO3

- (Franck et al., 2003). The strong IdiA
expression by Synechococcus just above and below the
thermocline is consistent with these previous results and
also supports the supposition that Fe may be a limiting
nutrient to the picoplankton as well as the microplankton
in this region. The decrease in IdiA detected at the chlo-
rophyll maximum is likely the result of a non-reactive clade
dominating at this depth. As can be seen in the 8 m
histogram, the assay is also able to distinguish subpopu-
lations with different IdiA expression/reactivity, although
we are unable to attribute this difference to specific
clades. However, the finding of physiological Fe stress in
the field population is consistent with findings that
upwelling regions both in California (Bruland et al., 2001)
and Peru are also Fe-limited (Hutchins et al., 2002). This,
combined with the observation that Synechococcus
strains from coastal regions have more Fe stress genes,
supports the idea that Synechococcus, and perhaps phy-
toplankton in general, are more Fe-stressed in coastal
and upwelling regions than they are in the open ocean.

Future directions

Looking at the genomic and metagenomic distribution of
Fe stress genes has raised some interesting questions
about the nature of Fe stress. It appears that Synechoc-
occus from coastal and upwelling environments possess
a wider range of genes to cope with Fe stress, while open

ocean Synechococcus contain more putative Fe3+ trans-
port genes and dpsA homologues. Adaptation to Fe stress
may be an important trait that distinguishes marine Syn-
echococcus strains from each other and Prochlorococ-
cus. The IdiA expression assay could be used to test
whether Synechococcus endures different levels of Fe
stress in coastal, upwelling and open ocean environ-
ments. With additional antisera for different clades of Syn-
echococcus, the IdiA expression assay may potentially
allow us not only to detect Fe stress but also to sort
stressed cells using flow cytometry and to identify them by
molecular approaches such as quantitative PCR of the
internal transcribed spacer (ITS) region (Rocap et al.,
2004; Zinser et al., 2006). We can then look for intrage-
neric differences in Fe stress, and perhaps definitively
determine if Fe stress is an important physiological dis-
tinction between the clades of marine Synechococcus.

Experimental procedures

Genomic analysis

Genes involved in compensating for Fe stress were selected
based on annotation in genomes or citations in literature. One
or more amino acid sequences of these genes were used
to perform BLASTP (Altschul et al., 1997) searches of the
National Center for Biotechnology Information (NCBI) nr
protein database using the BLOSUM 64 amino acid matrix,
filtering low-complexity sequences out of the search but using
those sequences to calculate final expect values. From the
BLAST search a minimum evolution tree was constructed in
the NCBI web interface as an estimate of the genetic simi-
larity. The node containing the gene of interest in sequenced
Synechococcus, Synechocystis and Prochlorococcus
genomes was selected and genes in the subtree beyond the
node were saved. These genes were aligned and maximum
likelihood trees were constructed with Tree-Puzzle version
5.2 (Schmidt et al., 2002) using quartet sampling and neigh-
bor joining based on the WAG model of substitution;
branches were verified by quartet puzzling. The determina-
tion of homology was made based on the maximum likelihood
tree and the gene predictions in the genome annotations; the
distinction between bacterioferritin and ferritin was made
based on the presence of an essential glutamic acid at
residue 60 (Andrews, 1998).

Metagenomic analysis of iron stress genes

The abundance of Fe stress genes in the GOS metagenomic
data set was measured using a two-step BLAST (version
2.2.15) (Altschul et al., 1997) approach modified from Martiny
and colleagues (2006). Only GOS sites designated as ‘open
ocean’ or ‘coastal’ in the original GOS survey were included
(Rusch et al., 2007). The set of DNA query sequences for a
particular gene was composed of all homologues of that gene
found in the sequenced genomes of Synechococcus, Syn-
echocystis and Prochlorococcus. All unique reads recruited
with an expect value < 10-10 were kept. These reads were
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compared against the NCBI’s nr database using BLASTX. The
best hit based on bit score was retained (ties were broken by
E-value). The best hits were tallied only if their gene annota-
tion matched the query gene used to recruit the GOS read.
The number of hits observed for a particular gene was nor-
malized to the mean length of each query gene in kilobases.
In addition to the selected Fe stress genes, eight single-copy
control genes used by Martiny and colleagues (2006) were
also tallied, then the length-normalized tally was used to
express the abundance of Fe stress genes in terms of genes
per genome.

Synechococcus cultures

Synechococcus strains (Table 2) representative of six differ-
ent clades defined by ribosomal ITS regions (Rocap et al.,
2002) were grown in batch culture. Cells were grown in SN
media modified by the substitution of ferric ammonium
citrate for ferric citrate and the omission of cyanocobalamin
(Waterbury et al., 1986) or in Fe-deficient SN media where
ferric ammonium citrate was replaced with an equimolar
amount of sodium citrate as appropriate. Reagents added
to media were all purchased from Sigma (St Louis, MO),
with the exception of Na2-EDTA that was purchased from
Fisher Scientific (Waltham, MA). The seawater base for the
SN media was collected from Vineyard Sound, Woods Hole,
MA, then 10 mm-, 5 mm- and 0.7 mm-filtered and stored in
the dark until use. To determine antiserum cross-reactivity,
50 ml cultures were grown in 125 ml glass flasks under
15 mE m2 s-1 of constant light. Culture growth was monitored
by measuring phycoerythrin fluorescence in a TD700 Fluo-
rometer (Turner Designs, Sunnyvale, CA) after aseptically
transferring cultures into sterile acid-washed 25 mm glass
tubes (Kimble/Kontes, Vineland, NJ). To determine if IdiA
was induced under oxidative stress conditions 300 ml of
Synechococcus sp. WH7803 was grown in 20 mE m2 s-1 of
constant light at 22°C to late log phase in an acid washed
polycarbonate bottle. The culture was divided into nine
28 ml volumes. Three tubes were treated with methyl violo-
gen (final concentration, 100 nM); three received 3 mM
hydrogen peroxide for 1 h followed by the addition of 98
units of catalase; and three served as Fe-replete controls.

Cells were tracked by flow cytometry for 40 h then har-
vested for Western blotting.

Generation of recombinant Synechococcus
WH8102 IdiA

Purified Synechococcus WH8102 IdiA was obtained using
the PET histidine-tagging system marketed by Novagen
(Madison, WI). Using the sequence from the WH8102
genome, PCR primers were designed to clone the idiA gene
with the putative signal sequence removed and 5′ NdeI and 3′
BamHI sites incorporated into the amplified product (primer
sequences: IdiA NdeI 5′-GGAGACAACCAGCCATATGG
GCGTCTACTC-3′ and IdiA BamHI 5′-GACGACGGGA
TCCTGCCAACCGTTGGCGGCCATCAGCTCGAGCG-3′).
The PCR was performed using Pfu polymerase (Stratagene,
La Jolla, CA) in a ABI2400 PCR machine (Applied Biosys-
tems, Foster City, CA) with the following reaction conditions:
94°C for 5 min, then 25 cycles of 94°C for 1 min, 62°C for
1 min and 72°C for 4 min, and a final dwell of 72° for 10 min.
The amplified product was visualized via agarose gel elec-
trophoresis and purified from the gel using the Qiaquick Gel
Extraction kit (Qiagen – Valencia, CA). The purified product
was ligated into plasmid pET16b (pre-digested with NdeI and
BamHI) and transformed into E. coli strain E. coli BL21 lDE3
(F-, ompT, hsdSB(rB-, mB-), dcm, gal, l(DE3)). Putative clones
were screened using restriction enzymes and the plasmid
with the correct banding pattern was saved at -80°C as strain
EA38. The recombinant IdiA protein was expressed from
strain EA38 and visualized (Fig. S1) as described in Webb
and Downs (1997).

The Synechococcus WH8102 IdiA-expressing extracts
from strain EA38 were centrifuged at 11 300 g in a Beckman
JA-20 rotor for 30 min to separate the soluble and insoluble
fractions. As the insoluble fraction contained the recombinant
IdiA, the inclusion body purification protocol described in the
Novagen PET manual was performed. Once ~90% pure IdiA
was obtained it was verified using LS-MS by M.A. Saito (data
not shown). This partially purified IdiA was subjected to SDS-
PAGE using a 12% polyacrylamide gel; the IdiA band was cut
out and sent to Strategic Biosolutions (Windham, ME) for
generation of a rabbit anti-Synechococcus WH8102 IdiA poly-
clonal antiserum.

Table 2. Synechococcus strains used in antiserum cross-reactivity experiments.

Strain Cladea PUB/PEBb Sea Latitude Longitude Isolated by: Date

WH8020 I 0.78 Sargasso Sea 38.67 -69.57 J. Waterbury June 1980
WH6501 II 0.43 Tropical Atlantic 8.73 -50.83 R. Guillard June 1965
WH8002 II 0.48 Gulf of Mexico 19.75 92.42 L. Brand April 1980
WH8109 II 0.89 Sargasso Sea 39.48 -70.47 L. Brand June 1981
WH8102 III 2.06 Sargasso Sea 22.50 -65.60 J. Waterbury March 1981
WH8103 III 2.40 Sargasso Sea 28.50 -67.40 J. Waterbury March 1981
WH5701 Marine B NA Long Island Sound - - R. Guillard 1957
WH8101 VIII NA Woods Hole 41.52 -70.67 F. Valois June 1981
WH7803 V 0.39 Sargasso Sea 33.75 -67.50 L. Brand July 1978
WH8016 VI 0.40 Woods Hole 41.52 -70.67 F. Valois June 1980
WH8018 VI No PUB Woods Hole 41.52 -70.67 F. Valois June 1980

a. Clade data from Rocap and colleagues (2002) and Ahlgren and Rocap (2006), all other data from Waterbury and colleagues (1986).
b. PUB/PEB is the ratio of the pigments phycourobilin to phycoerythrobilin expressed as absorbance at 495 and 545 nm respectively.
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Western blots

For each sample, 5–10 mg of protein extract per lane was
either loaded onto a 12.5% Hepes-buffered acrylamide gel
(Pierce, Rockford, IL) and run for 45 min at 120 V, or loaded
onto a 12.5% Tris-buffered acrylamide gel and run for 35 min
at 200 V in a MiniProtean III gel box (Bio-Rad, Hercules, CA).
Gels were either transferred by electrophoresis to 0.45 mm
nitrocellulose membrane (Bio-Rad, Hercules, CA) for
Western blotting or silver-stained (Owl Scientific, Portsmouth,
NH) to confirm the presence of bulk protein. In each strain,
Fe-replete and Fe-deficient cultures were tested for reaction
to the immune serum of rabbit anti-WH8102 IdiA and to the
pre-immune serum from the same rabbit. All blotting was
done with an amplified alkaline phosphatase blotting kit
(Bio-Rad, Hercules, CA) according to the manufacturer’s
directions, except for the oxidative stress experiments, which
used a chemiluminescent blotting kit (Pierce, Rockford, IL).

Whole cell labelling

For whole-cell labelling, cultures of WH7803 were grown in
triplicate at 15 mE m-2 s-1 of constant light intensity in the
modified SN media described above, in acid-cleaned 500 ml
glass flasks with a culture volume of 250 ml. Growth was
monitored by fluorescence as described above and samples
for total protein extraction and Western blotting were taken at
2.5 and 7.5 days. Whole-cell labelling samples were taken
approximately daily (Fig. S2).

For whole cell labelling, 1 ml of cells varying in concentra-
tion from ~1 ¥ 104 to ~1 ¥ 107 cells ml-1 (depending on growth
phase and experiment) was placed in a 1.5 ml centrifuge tube
and heat-bleached for 1 h at 65°C to reduce endogenous
phycobiliprotein fluorescence (Scanlan et al., 1997). The
bleached cells were fixed in seawater media at 4°C with the
addition of 0.25 vol. of 4% paraformaldehyde (Harlow and
Lane, 1999), incubated overnight (~12 h) at 4°C in a 1% (final
concentration) solution of paraformaldehyde, and pelleted
and re-suspended in 1¥ phosphate-buffered saline (PBS)
(Harlow and Lane, 1999). Just prior to labelling, the cells
were transferred into 96-well Multicsreen plates with a
0.45 mm polycarbonate filter (Millipore, Billerica, MA), which
allowed for rapid simultaneous fixation and labelling
(Fig. S2). The cell wall was permeabilized using the proce-
dure of Currin and colleagues (1990) except that cells were
incubated at 37°C and the lysozyme concentration was
0.5 mg ml-1. Permeabilized cells were washed twice for 5 min
with a wash solution of 0.025% Triton X-100 in PBS. The cell
membrane was permeabilized for 1 h at 25°C with permeabi-
lizing solution (0.5% Triton X-100, 50 mM glycine in PBS) and
washed twice with wash solution.

After membrane permeabilization, a 1:100 strength solu-
tion of anti-WH8102 IdiA antiserum or pre-immune serum
was added as appropriate. The serum was diluted in a
0.22 mm-filtered solution containing 3% bovine serum
albumen, 0.025% Triton X-100 and 0.02% sodium azide in
PBS. The cells were incubated in the serum solution at 25°C
for 1 h then washed three times with wash solution. A 1:200
dilution of Alexaflour 488 fluorochrome tagged goat anti-
rabbit antiserum (Molecular Probes, Eugene, OR) was pre-
pared as described for the primary antiserum. The cells were

incubated in 75 ml of secondary antiserum solution in the dark
at 25°C for 1 h. After this final step the cells were washed 2¥
with wash solution and once with PBS, then re-suspended in
PBS. Cells were transferred out of the plates just prior to
analysis with the flow cytometer.

Field sampling

Approximately 800 ml of seawater was collected from station
13 at 8, 15, 25 and 45 m depth aboard the R/V Knorr cruise
182-5 and filtered onto a 25 mm, 0.45 mm polycarbonate filter
using a peristaltic pump. The filter was placed in a 1.5 ml tube
with 1 ml of 0.2 mm filtered seawater and agitated. The
re-suspended cells were fixed and labelled as described in
the previous section except that a 1:100 dilution of the sec-
ondary antibody was used and cells were incubated in 25 ml
of primary and secondary antiserum.

Fe measurements

All samples were collected using trace metal clean tech-
niques. Samples were filtered through acid-cleaned 0.4 mm
polycarbonate filters into rigorously acid-cleaned low-density
polyethylene bottles. After filtration, samples were acidified to
approximately pH 2 by the addition of 2 ml of concentrated
HCl (Seastar) per litre of seawater. Total dissolved Fe con-
centration was measured using isotope dilution and magne-
sium hydroxide pre-concentration followed by analysis with
inductively coupled plasma mass spectrometry (ICP-MS)
after Wu and Boyle (1998) and Saito and Schneider (2006).
Acid-washed 15 ml polypropylene centrifuge tubes (Globe
Scientific Inc.) were rinsed once with sample and then filled
with 13.5 ml of sample (exact volume determined gravimetri-
cally). Samples were then spiked with a 57Fe spike (> 95% as
57Fe, Cambridge Isotope Laboratories) and allowed to equili-
brate overnight. The following day, 125 ml of 11 M ammonium
hydroxide (Seastar) was added to each tube. After 90 s, the
tube was inverted and after an additional 90 s, tubes were
centrifuged for 3 min at 3000 g (3861 r.p.m.) using a swinging
bucket centrifuge (Eppendorf). The majority of the superna-
tant was decanted carefully and then tubes were re-spun for
3 min to form a firm pellet and the remaining supernatant was
shaken out. Pellets were stored dry until the day of analysis
(no longer than a few days). Pellets were dissolved on the
day of ICP-MS analysis using 0.5–1.5 ml of 5% nitric acid
(Seastar). ICP-MS measurements were made using a Finni-
gan ELEMENT2 in medium resolution mode. The reported
values have had the procedural blank subtracted. To
measure the procedural blank, 1 ml of low-Fe surface sea-
water was treated as the samples but calculations were per-
formed as though it was a 13.5 ml sample (Fe contribution
from the 1 ml was subtracted from blank value). The average
blank value was 0.08 nM and the average detection limit was
0.08 nM. When values fell below the daily detection limit, they
are reported as less than daily detection limit.

Flow cytometry

Flow cytometry on the laboratory experiments was performed
on FACSCalibur flow cytometer (Becton, Dickinson, Franklin
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Lakes, NJ) using a 488 nm argon laser as an excitation
source. The Alexafluor 488 signal of the population was mea-
sured from the mean fluorescence in the 530/30 nm channel.
Cells were diluted as necessary in the same PBS buffer so
that fluorophores would be exposed to the same pH. The field
sample was measured using a Cytopeia Influx flow cytometer
(Seattle, WA) using a 488 nm laser. Labelling was measured
in the 530/40 nm channel.

Post-collection analysis of the fluorescent intensity and
associated statistics were calculated using FlowJo for Macin-
tosh version 8 (Tree Star, Ashland, OR). Populations were
gated by chlorophyll and forward scatter. The mean of the
530/30 nm channel was calculated for the pre-immune and
immune treatments of each biological replicate. In the labo-
ratory samples the antibody-treated mean fluorescence was
divided by the pre-immune serum-treated fluorescence for
each biological replicate. As a summary statistic, the ratio and
standard error were calculated from the ratios by bootstrap
estimation (n = 50) in Stata 9.1 (Statacorp, College Station,
TX). In the field sample, probability binning (Roederer et al.,
2001) was used to gate the portion of the cell population with
> 95% chance of being distinct from the pre-immune control
population. The method was also used to identify the popu-
lation with > 95% probability of being part of the control
population.
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Supporting information

Additional Supporting Information may be found in the online
version of this article:

Fig. S1. Heterologous expression and partial purification of
histidine-tagged Synechococcus sp. WH8102 IdiA. (A) Com-
parison of banding between extracts of E. coli strains con-
taining plasmids with or without IdiA insert: non-induced
pET16b (1), induced pET16b (2), pET16b-IdiA1 (3) and
pET16b-IdiA2 (4). (B) Partial purification of his-IdiA cloned
into E. coli. Shown are: molecular weight standard (1),
column flow through (2), wash flow through (3), and eluted
protein (4). Arrows denote IdiA.
Fig. S2. The procedure for labeling cells. Samples were
taken and heat bleached for 1 hr at 65°C to remove endo-
genous phycobiliprotein fluorescence, then fixed with 1%
paraformaldehyde at 4°C overnight, rinsed and stored at 4°C.
The pre-immune control samples and their matched experi-
mental samples are drawn from the same tube to minimize
fixation and cell density differences. The permeabilization
and labeling are done simultaneously in 96-well plates to
further reduce variation in labeling.

Please note: Wiley-Blackwell are not responsible for the
content or functionality of any supporting materials supplied
by the authors. Any queries (other than missing material)
should be directed to the corresponding author for the article.
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Supplementary Fig. 1   Heterologous expression and partial purification of histidine-tagged 
Synechococcus sp. WH8102 IdiA. (A) Comparison of banding between extracts of E. coli strains 
with or without IdiA insert: non-induced pet16b (1), induced pet16b (2), pet16b-IdiA1 (3) and 
pet16b-IdiA2 (4). (B) Partial purification of his-IdiA cloned into E. coli. Shown are: molecular 
weight standard (1), column flow through (2), wash flow through (3), and eluted protein (4). 
Arrows denote IdiA.
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Supplementary Fig. 2 The procedure for labeling cells. 
Samples were taken and heat bleached for 1 hr at 65ºC 
to remove endogenous phycobiliprotein fluorescence, 
then fixed with 1% paraformaldehyde at 4ºC overnight, 
rinsed and stored at 4ºC. The pre-immune control 
samples and their matched experimental samples are 
drawn from the same tube to minimize fixation and cell 
density differences. The permeabilization and labeling 
are done simultaneously in 96-well plates to further 
reduce variation in labeling.
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Abstract 

 Siderophores are iron-binding molecules synthesized by a wide range of bacteria 

and fungi in iron-limited environments ranging from oceans to animal hosts. In the 

oligotrophic ocean many heterotrophic bacteria produce siderophores but oligotrophic 

strains of Synechococcus of Prochlorococcus are not known to produce siderophores, 

despite average surface ocean Fe concentrations of just 0.07 nM. To understand the 

physiological effects of siderophores and the bioavailability of Fe bound to siderophores, 

we examined the influence desferrioxamine B (DFB) on a natural plankton population 

and two strains of Synechococcus. In experiments with natural phytoplankton populations 

from the Sargasso Sea, DFB inhibited the growth of Synechococcus in a concentration-

dependent manner at as little as 20-40 nM while simultaneously stimulating the growth of 

heterotrophic bacteria. The severity of the inhibition of Synechococcus could not be 

attributed to decreases total or in free Fe. The growth inhibition is reversible but its 

severity is increased by light. The hydroxamate siderophore Ferrichrome also inhibited 

Synechococcus suggesting the effect may extend to other hydroxamate siderophores. The 

bacteriostatic effect DFB at such low concentrations raises the possibility that 

siderophores may serve some antibiotic function the environment. 
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Introduction 

 Siderophores are biogenic molecules that bind Fe(III) with extremely high 

stability. These molecules are used for iron scavenging by free-living and pathogenic 

bacteria and fungi (Miethke and Marahiel, 2007; Neilands and Leong, 1986) and there is 

emerging evidence that siderophores are ecologically important in the oceans. The 

hydroxamate siderophores ferrioxamine G and ferrioxamine E are widely distributed in 

the Atlantic at concentrations of 3-20 pM representing as much as 4.6% of the soluble Fe 

pool (Mawji et al., 2008). Ferrioxamine G, E and other siderophores may represent an 

important portion of the Fe ligands that collectively bind ~99% of the Fe in the ocean 

(Rue and Bruland, 1995; Witter et al., 2000). 

 The bioavailability of siderophores varies in different marine phytoplankton and 

bacterioplankton. The eukaryotic diatom Thalassiosira oceanica can take up iron bound 

to DFB by reducing the ligand complex (Maldonado and Price, 2001). In laboratory 

experiments this Fe uptake supported growth, but surprisingly growth rates of T. 

oceanica decreased as the concentration of the bioavailable FeDFB complex increased 

(Maldonado and Price, 2001). Another diatom Ditylum brightwellii has also been shown 

grow on Fe complexed to DFB (Naito et al., 2008). Other eukaryotic phytoplankton were 

unable to grow on DFB bound Fe including isolates the groups Raphidophyceae, 

Dinophyta, Dinophyta, Haptophyta and Chlorophyta when 2 µM Fe was supplied pre-

complexed to 20 µM DFB (Naito et al., 2008). The chlorophyte Chlorella vulgaris was 

able to take up Fe from DFB but its ability to grow on Fe was not assessed (Allnutt and 
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Bonner, 1987). Less is known about what forms of Fe are bio-available to cyanobacteria. 

A culture of Synechococcus sp. CCMP1334 (equivalent to Synechococcus sp. WH7803) 

was reported to take up Fe from DFB, but growth was not measured (Hutchins et al., 

1999). Siderophore bound Fe appears to be most bioavailable to heterotrophic marine 

proteobacteria, in one experiment every one of the seven heterotrophic strains tested used 

the FeDFB complex for Fe uptake and growth (Granger and Price, 1999). 

 Siderophores are produced by many marine bacteria including, heterotrophic 

bacteria in the genera Marinobacter (Martinez and Butler, 2007), Halomonas (Martinez 

et al., 2000), Vibrio (Martinez et al., 2001) , Alteromonas (Reid and Butler, 1991) 

Pseudoalteromonas (Kanoh et al., 2003), and Roseobacter (Krey, 2008). Siderophores 

were produced by 40% of heterotrophic bacteria in a culture library of isolates from the 

eastern subtropical Pacific (Krey, 2008). The coastal marine cyanobacteria 

Synechococcus spp. PCC7002 and WH8101 also produce siderophores, however these 

compounds have yet to be found in oligotrophic cyanobacteria. The system that provides 

the energy needed to actively transport siderophore-bound Fe (TonB-ExbD-ExbD) has 

yet to be identified in any of the Synechococcus or Prochlorococcus genomes, suggesting 

the siderophore secretion is uncommon in oligotrophic picocyanobacteria.  It is unclear 

why siderophore production is more common in heterotrophic bacteria than 

cyanobacteria from the open ocean.  

 The ecological role of siderophores in the open ocean may differ from other 

environments. Cell densities in the open ocean are low relative to coastal and terrestrial 

environments, but the open ocean also contains particles where cell densities can be 
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higher. In a dense biofilm, secreting Fe scavenging molecules is likely to benefit the 

group but the energetic cost of secreting siderophores is higher in more diffuse 

environments. A model of siderophore secretion in the ocean suggests that the process is 

only effective when high densities of cells collectively secrete a siderophore. (Völker and 

Wolf-Gladrow, 1999). The collective process is rendered less effective by siderophore 

piracy from unrelated bacteria (Stintzi et al., 2000) or genetically related cheaters who 

take up siderophores without producing them (Harrison et al., 2007), although this is less 

of a problem in dilute environments (Greig and Travisano, 2004). Some marine strains 

overcome diffusion losses by producing amphiphilic siderophores that attach to the cell 

membrane preventing loss by diffusion (Martinez and Butler, 2007). Despite their 

energetic costs, soluble siderophores appear to be widely distributed in the marine 

environment.  

 In this work, we examined DFB’s effect on the globally important marine 

autotroph Synechococcus (Partensky et al., 1999; Zwirglmaier et al., 2008), and on a 

natural assemblage of phytoplankton and bacterioplankton from the Sargasso Sea. DFB 

reduced the growth rate of Synechococcus and, at higher concentrations, even arrested 

growth and decreased in vivo fluorescence. Light aggravated the effect, decreasing the 

inhibitory concentration to as little as 20-40 nM. The growth inhibition did not 

correspond to total Fe or modeled thermodynamic or kinetic estimates of Fe’ (free Fe, the 

sum of all dissolved, non-organically complexed Fe(III)). This work suggests that the 

effect of hydroxamate siderophores on plankton is complex and may vary greatly 

between phytoplankton and bacterioplankton.  
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Materials and Methods 

General Culture 
 SNAX medium was the base medium used for maintaining Synechococcus and 

performing experiments (Waterbury et al., 1986).  Unless otherwise noted the medium 

was modified by the omission of cyanocobalamin and an increase in EDTA concentration 

to 20 µM, the concentrations of the nutrients and ligands in all experimental media are 

given in Table 1. The seawater base for all media was Sargasso seawater, 0.2 µm filtered 

and stored in acid-washed polyethylene bottles. Prior to preparing media, the seawater 

was re-filtered and diluted to 75% with ultra-pure water. Total Fe in the media was not 

quantified. All cultures were grown at 24ºC in continuous light. Nutrients used in the 

preparation of media were SigmaUltra grade (Sigma, St. Louis, MO) except for the ACS 

grade Na2-EDTA, which was from Fisher Scientific (Waltham, MA). Macronutrient 

stocks were purified with a chelex resin column washed for trace media preparation 

(Sigma, St. Louis, MO) (Price et al., 1988). All DFB used was in the form of 

Desferrioxamine B mesylate salt (catalog # D9533, Sigma, St. Louis, MO). The pH of 

Fe- ligand solutions was adjusted with trace metals analysis grade HCl  (Mallinckrodt 

Baker Phillipsburg, NJ), and NaOH.(Fluka, Milwaukee, WI).  

Field studies 
 Water was collected near the Bermuda Atlantic Time Series site (31º 35.16 N, 64º 

11.18 W) using the sampling rosette aboard the R/V Atlantic Explorer.  The sample was 
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collected at 15:40 UTC on 7 October 2008 from 80 m depth. Collected water was 

transferred into microwave Tyndalized, acid-washed 125 mL polycarbonate bottles. 

Triplicate bottles were amended with: pH 8.0 FeDFB complexed at concentrations of 

400:800, 40:80, 12:24 or 4:8 nM; or 800 nM  ethylenediamine-N,N'-bis(2-

hydroxyphenylacetic acid) (EDDHA) without Fe; or 800 nM FeEDTA complex pH8.0. 

As a control one set of bottles was not amended. Samples were placed in a deckboard 

incubator maintained at ambient surface seawater temperature and shaded to 3% of 

surface light intensity with blue lighting gels and window screen. Samples were collected 

for flow cytometry approximately every 12 hours for 96 hours and preserved by 

incubating cells with 0.125% glutaraldehyde in the dark for 10 minutes at room 

temperature then freezing them in liquid nitrogen. Preserved cells were counted and 

characterized using an Influx cytometer (Cytopia-BD, Seattle, WA). All size and 

fluorescence side scatter and forward scatter readings were normalized to fluorescent 2 

µM polystyrene beads (Polysciences, Warrington , PA) (Olson et al., 1985; Cavender-

Bares et al., 1999).  

Low light growth rate 
 Synechococcus sp. WH7803 was grown at 10 µE m-2 s-1 continuous light in 

SNAX -Fe medium containing 2µM EDTA. The medium was amended with varied 

concentrations (2, 0.67, 0.2, 0.067, 0.02 µM) of ferric citrate precomplexed to an excess 

of DFB in a 2:5 ratio at pH 8.0, Table 1. The different media were inoculated with 

washed cells and 250 µL was dispensed into 8 replicate wells of a 96 well plate. The 

inoculum was washed by twice centrifuging the culture at 8000 RCF and resuspending it 
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in SNAX -Fe. Growth rate was measured by the change in in vivo phycoerytherin 

fluorescence. 

Combined light and DFB titrations 
 Modified SNAX -Fe, was amended with:  2 µM FeEDTA pH 8, or 2:4 µM 

Fe:DFB pH 8, or 0.02 0.04µM Fe:DFB pH 8 or 2:4 µM Fe:Ferrichrome, pH 8. 25 mL of 

medium was dispensed into acid-washed polycarbonate centrifuge tubes. Each treatment 

had three biological replicates.  To inoculate each culture a mid-log phase, light 

acclimated culture was vacuum filtered into a sterile, acid-washed 0.45µm polycarbonate 

membrane held in an acid-washed, autoclaved glass filter frit. The cells were washed 

with sterile 75% Sargasso seawater, then the filter was aseptically transferred to a sterile 

acid-washed polycarbonate tube and cells were resuspended in ~20 mL of sterile 75% 

Sargasso seawater.  1.0 ml of the cell suspension was added to each tube. Growth was 

monitored by in vivo fluorescence using a TD700 fluorometer (Turner Instruments, 

Sunnyvale, CA) with a phycoerytherin filter set (excitation 544/10 nm, emission 577 nm 

long pass). Cells were grown at 10, 40 or 70 µE m-2 s-1 continuous light, as indicated. 

Western blotting 
 At the end of the culture experiment described above, cells of Synechococcus sp. 

WH7803 were filtered onto a 0.45 µm polycarbonate membrane filter and frozen at 

-20ºC. Protein was extracted by adding 65 µL of Bugbuster protein extraction reagent  

(EMD Chemicals, Gibbstown, NJ) and vortexing for 1 min. Samples were incubated at 

room temperature for 10 minutes then sonicated in 1.5 ml polypropylene tubes for 6 

minutes (30 seconds on/30 seconds off) on high power at 0ºC in a BioRuptor sonic bath 
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(Diagenode, Sparta, NJ).  Filters were pinched in the top of the tube and the tube was 

centrifuged at 12,000 × g for 3 minutes. The supernatant was transferred and was stored 

at 4ºC.  

 The protein was quantified using 5 µL of the protein extract and a Micro BCA 

protein quantification kit (Pierce, Rockford, IL) according to the manufacturer’s 

instructions. 1 µg of protein extract from each culture was separated on pre-cast 4-20% 

SDS-PAGE gels (Pierce, Rockford, IL) and transferred onto a nitrocellulose membrane 

using the Mini Protean III System (Bio-Rad Hercules , CA).  Western blotting was done 

using polyclonal rabbit antisera raised against recombinant IdiA from Synechococcus sp. 

WH8102 (Rivers et al., 2009). IdiA was detected with Super Signal western blotting kit 

(Pierce, Rockford, IL). 

Metal addition and cellular recovery 
 Synechococcus sp. WH8102 was grown in 40µE m-2 s-1 continuous light. Late log 

phase culture was filtered and resuspended as described previously in modified SNAX 

medium deficient in Fe and Mn.   Fe in the form of Fe EDTA (2 µM) pH8, FeDFB (2:4 

µM) pH 8 was added to cultures as appropriate or omitted in the -Fe control. After 144 

hours ferric citrate was added to selected cultures to raise the Fe concentration by 3 µM 

and saturate unbound DFB. To test the hypothesis that DFB was catalyzing the oxidation 

of Mn(II) and binding Mn(III) (Duckworth and Sposito, 2005), MnCl2 was added to raise 

the final Mn concentration by 3 µM. Cultures were grown in triplicate in acid-washed 

glass tubes and growth was monitored by fluorescence as described previously. 
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Chemical modeling 
 To understand the effect of DFB on Fe chemistry in the media both 

thermodynamic and kinetic modeling was used and the results were compared. All 

thermodynamic speciation calculations were made with the chemical modeling software 

PHREEQC for Windows version 2.15 (Post, 2008; Parkhurst and Appelo, 1999). The 

chemical species modeled are listed in the footnote in Table 2. The MINTEQ database 

was used and data on DFB reactions were added from Morel and Hering (1993).  Fe 

speciation was modeled without redox reactions. 

 The system was also modeled kinetically using the ODE23s package in Matlab 

version 7.4 (Mathworks, Natick, MA). Kinetic modeling was important because the 

dissociation of DFB and EDTA occur slowly. The conditional kinetic rate constants and 

biological constants used are presented in Table 3. The ordinary differential equations 

defining the system are presented in Table 4. Kinetic rate constants for biological Fe(III)’ 

uptake are from the diatom Thalassiosira weissflogii. 

Results 

The effect of desferrioxamine B on an Atlantic microbial 
population  
 To test the effect of desferrioxamine B on a natural microbial population, 

seawater was collected near Bermuda and incubated for 4 days with several Fe-ligand 

complexes, Figure 1. The addition of 800 nM of FeEDTA, stimulated the growth of 

Synechococcus cells over the unamended control suggesting some degree of Fe 

limitation, although EDTA could have altered the speciation of other metals as well. Fe 
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Figure 1 The response of a natural seawater sample to amendments with different forms of complexed 
Fe or ligand.  Water was collected from 80 m depth in the Sargasso Sea and incubated in a deckboard 
incubator for 96 hours at 3% of surface irradiance.  Bottles were amended with four different concentra-
tions of FeDFB complex, the aminocarboxylate Fe ligand EDDHA, 800 nM FeEDTA or left unamended. A. 
The growth of Synechococcus measured by flow cytometry in the presence of different ligands. B. The 
growth of putative heterotrophic bacteria. In cases where the value is at the origin no gate as drawn 
because there was not a discernible population.
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complexed to DFB in a 1:2 ratio was added to seawater at concentrations of 400:800 nM, 

40:80 nM, 12:24 nM, 4:8 nM FeDFB. The lowest concentrations of FeDFB only slightly 

retarded growth, but at the two higher concentrations (40:80 nM and 400:800 nM 

FeDFB) growth was significantly inhibited; in all four treatments growth decreased with 

increasing DFB concentration. For comparison the synthetic ligand EDDHA was added 

without additional Fe. This ligand forms strong (Yunta et al., 2003) but photolabile Fe 

complexes and is known to induce Fe limitation in Synechococcus (Chadd et al., 1996).  

Growth in the presence of EDDHA was similar to the unamended control. Chlorophyll 

fluorescence per cell measured by flow cytometry declined in the Synechococcus and 

Prochlorococcus populations regardless of the treatment, possibly because of increased 

light irradiance in the shipboard incubators. This bleaching made it difficult to accurately 

count Prochlorococcus and for this reason their growth is not presented. The presence of 

FeDFB complexes significantly stimulated the growth of non-chlorophyll containing 

bacterioplankton in a concentration-dependent manner. The stimulation was not observed 

in the unamended control or after the addition of FeEDTA or the synthetic chelator 

EDDHA.  

DFB induced growth inhibition in Synechococcus 
 The effects of DFB on Synechococcus were investigated in greater detail through 

a series of laboratory culture experiments. To determine if DFB inhibited growth in 

axenic cultures, Synechococcus sp. WH7803 was grown at low light intensity (10 µE m-2 

s-1) with varied concentrations of Fe (2, 0.67, 0.2, 0.067, 0.02 µM) complexed to DFB in 

a 2:5 ratio (Figure 2).  DFB inhibited the growth rate linearly in a concentration 
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Figure 2 The growth rates of Synechococcus sp. WH7803 at constant low light (10 µE m-2 
s-1) in the presence of varied amounts of Fe precomplexed to DFB at a fixed 2:5 ratio. 
The total amount of EDTA was 2 µM at all concentrations. 
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dependent manner. The results show that growth rate is negatively correlated with total 

Fe, total DFB and modeled values of FeDFB and unbound DFB. Modeled values of Fe’ 

were not able to explain the decrease in growth rate (discussed later).  

Light and growth inhibition by two hydroxamate siderophores 
 At higher light intensities, DFB was a more potent growth inhibitor (Figure 3, 

Supplementary Figure 1), causing complete arrest of growth and bleaching rather than 

just slowing growth rate as in Figure 2. Cells of Synechococcus sp. WH7803 were grown 

at 70 µE m-2 s-1 with Fe, without Fe, and at high (2:4 µM) and low concentrations 

(0.02:0.04 µM) of FeDFB at a fixed ratio of 1:2 (Figure 3A). The high DFB culture 

declined while the low DFB culture grew at the same rate and reached the same yield as 

the -Fe culture. This same effect occurs in Synechococcus sp. WH8102 at light levels 

down to 40 µE m-2 s-1 (Figure 3D). The growth rates for Synechococcus sp. WH7803 

grown at 10 µE m-2 s-1 under high and low DFB concentrations (Figure 3E) differ by less 

would be expected from Figure 2, this is likely due to differences in culturing; the EDTA 

concentration was higher, cells were grown in tubes rather than microwell plates and the 

work was done in separate laboratories. At the lowest light level high DFB treated 

cultures did not initially decline and in Synechococcus sp. WH8102 growth initially 

increased, but began to decline before it did in the  -Fe and the low FeDFB treatments. In 

panels A-B, cells were also grown in the presence of Fe:Ferichrome at a concentration of 

2:4 µM.  The inhibitory effect of this other hydroxamate siderophore closely matched the 

inhibitory effect of DFB. The decline of in vivo culture fluorescence in high DFB cultures 

occurred at all but the lowest light level.  
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 At the end of the growth experiment, cells of Synechococcus sp.WH7803 were 

harvested to detect the abundance of the iron stress protein IdiA by quantitative 

immunoblotting, Figure 3G. IdiA accumulated under Fe limitation in marine 

Synechococcus (Webb et al., 2001; Rivers et al., 2009).  IdiA was less abundant in the 

+Fe cultures, although in the 40 µE m-2 s-1 treatment IdiA was present in quantities 

similar to -Fe cultures, likely because the culture was nearing stationary phase. IdiA 

expression was high in all -Fe, high DFB, low DFB, Ferrichrome or EDDHA treatments 

(for simplicity growth curves were omitted for EDDHA).  Expression was not higher in 

either FeDFB treatment than it was in the -Fe treatment. Fe stress did not appear to be 

greater in either of the DFB treatments, although it is possible that IdiA expression was 

already at its maximal level. 

Recovery of growth rate after saturating Fe addition 
 DFB at concentrations of  ~20-40 nM more than Fe appear to cause characteristic 

growth inhibition and cellular bleaching at all but very low light levels.  In order to 

determine if this stress is reversible, Synechococcus sp. WH7803 was grown in the 

presence of 2:4 µM FeDFB, Figure 4. Approximately 2 days after in vivo fluorescence 

began to decline, ferric citrate was added raising the Fe concentration by 3 µM, enough to 

saturate the unbound DFB and provide 1 µM of Fe for cellular growth. This addition 

allowed the cells to resume growth, indicating that the effect is reversible.   

 DFB has been reported to catalyze the oxidation of Mn(II) to Mn(III) (Duckworth 

and Sposito, 2005) and tightly bind Mn(III).  To test the theory that DFB was causing Mn 

co-limitation, Mn(II) was added to raise the Mn concentration by 3µM, Figure 4. The 
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Figure 3 The growth of Synechococcus spp. WH7803 and WH8102 at different Fe and 
DFB concentrations and varied light intensities. Growth was measured by relative 
phycoerytherin fluorescence. In each panel +Fe and Fe cultures serve as controls. All 
FeDFB complexes were formed prior to addition at a 1:2 ratio.  In A-B the cells were also 
grown in the presence of 2µM Fe pre-complexed to 4 µM of the hydroxamate sidero-
phore Ferrichrome. G) The presence of the iron stress protein IdiA from extracts of 
Synechococcus sp. WH7803.  Each lane contains 1 µg of total protein extract taken at 
the end of the growth curves.  For simplicity representative bolts are shown. In all plots 
the positive control was 1 µg of an extract of Synechococcus sp. WH7803 grown at 5 nM 
total Fe and known to contain IdiA. The 10 and 40 µE m-2 s-1 bands were run on the 
same blot and share a positive control, the 70  µE m-2 s-1 was run on a separate blot.
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Figure 4 Reversing of the inhibitory effect of DFB. Cultures of Synechococcus sp. 
WH8102 were grown at 40 µE m-2 s-1 with 2µM Fe, without added Fe or with 2 µM Fe 
complexed to an excess of DFB (4µM). At Hour 144, ferric citrate or Mn(II) was added to 
increase the concentration by 3µM in selected FeDFB treatments.
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Mn(II) addition did not rescue the cultures and the addition of Fe and Mn (data not 

shown) did not improve the growth rate over the Fe amended culture. This suggests that 

the effect is not related to extracellular Mn co-limitation and that Fe must be replaced for 

recovery even if unbound DFB has presumably been complexed to some degree by other 

metals. 

Kinetic and thermodynamic models of Fe speciation and uptake 
 The concentration of Fe’ was modeled in an attempt to understand how DFB 

influenced Fe speciation in the previous experiments. Fe’ was modeled both kinetically 

and thermodynamically in an attempt to place boundaries on the range of possible Fe’ 

values.  The thermodynamic modeling assumed equilibrium was reached between all the 

species in seawater, and that the uptake by phytoplankton had a negligible effect on the 

Fe’ (Table 2).  Under these assumptions the log Fe’ = -16.9 when the Fe:DFB ratio was 

1:2, regardless of the concentration. This is a very low Fe’ concentration, but the 

assumptions of the thermodynamic modeling may not hold for a system with two ligands 

and biological uptake. 

 To account for biological uptake and ligand competition, the system was modeled 

kinetically to represent the formation and dissociation and photo-reduction of the ligands 

DFB and EDTA in the presence of biological uptake, Figure 5. Cellular uptake was 

modeled using Fe(III)’ uptake parameters from the diatom T. weissflogii (Hudson and 

Morel, 1990), because rate constant data was not available for Synechococcus or 

Prochlorococcus. T. oceanica has been shown to take up Fe bound to DFB (Maldonado 

and Price, 2001) but this should not have effected the modeling results because only 
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Table 3  Constants used in the kinetic modeling of Fe speciation

a. All chemical rate constants are conditional for seawater
b. Biological constants measured with Fe replete cultures of  Thalassiosira weissflogii

Table 4 Ordinary differential equations used in kinetic modeling

ecnerefeRlobmySeulaVnoitpircsedlobmyS

kFeEDTA
d Rate constant, FeEDTA dissociation 1 × 10−6 s−1 Hudson and Morel (1990)

kFeEDTA
f Rate constant, FeEDTA formation 20 mol−1s−1 Hudson and Morel (1990)

kFeEDTA
hν Rate constant, FeEDTA photoreduction 4.4 × 10−7 s−1 Sunda and Huntsman (2003)

kFeDFB
d Rate constant, FeDFB dissociation 1.5 × 10−6 s−1 Witter et al. (2000)

kFeDFB
f Rate constant, FeDFB formation 1.9 × 106 mol−1s−1 Witter et al. (2000)

kFe2+

ox Rate constant, Fe2+ oxidation 6.2 × 10−3 s−1 Sunda and Huntsman (2003)
kFeL

f Rate constant, FeL formation 9 × 105 mol−1s−1 Hudson and Morel (1990)

kFeL
d Rate constant, FeL dissociation 2 × 10−4 s−1 Hudson and Morel (1990)

kin Rate constant, Fe cell import from FeL 2 × 10−3 s−1 Hudson and Morel (1990)
Lcell Number of ligands L per cell 1.7 × 10−17 mol cell−1 Hudson and Morel (1990)

d[Fe]

dt
= kFeL

d [FeL] − kFeL
f [Fe][L] + kFeDFB

d [FeDFB] − kFeDFB
f [Fe][DFB] . . . (1)

+ kFeEDTA
d [FeEDTA] − kEDTA

f [Fe][EDTA] + kFe2+

ox [Fe2+] (2)

d[FeEDTA]

dt
=kFeEDTA

f [Fe][EDTA] − kFeEDTA
d [FeEDTA] − kFeEDTA

hν [FeEDTA] (3)

d[EDTA]

dt
= kFeEDTA

d [FeEDTA] − kFeEDTA
f [Fe][EDTA] + kFeEDTA

hν [FeEDTA] (4)

d[FeDFB]

dt
= kFeDFB

f [Fe][DFB] − kFeDFB
d )5(]BFDeF[

d[DFB]

dt
= kFeDFB

d [FeDFB] − kFeDFB
f [Fe )6(]BFD[]

d[FeL]

dt
= kFeL

f [Fe][L] − kFeL
d [FeL] − kin )7(]LeF[

d[Fe2+]

dt
= kFeEDTA

hν [FeEDTA] − kFe2+

ox [Fe2+ )8(]

d[cellular]

dt
= kin )9(]LeF[

2
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Figure 5 Kinetic modeling of Fe speciation between DFB, EDTA and cellular uptake. The 
concentration of Fe’ and Fe bound to ligands was modeled as was the cumulative 
uptake rate for the cells and the cumulative disassociation rate for both ligands. The 
constants and equations for the model are provided in Tables 3 and 4. Kinetic uptake 
constants are for Fe(III)’ are from the diatom T. weissflogii. The cell concentration was 
held constant in each simulation. A. The ligand system alone was modeled. B-C. The 
high and low FeDFB concentrations used in experiments were modeled. 1×106 cells 
mL-1 was chosen because this represents an extremely dense culture of T. weissflogii 
D-E. In these conditions the cell density was set artificially high to examine the effect of 
exceeding DFB’s buffering capacity. Once the system became unbuffered Fe’ correlated 
with FeDFB.  
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Fe(III)’ rate constants were used. The combined physical and biological parameters were 

modeled using the constants and equations in Tables 3 and 4.  The abiotic chemical 

equilibration between FeDFB and EDTA revealed that the over the time span of the 

growth experiments EDTA bound Fe was not a significant source of Fe to the Fe’ pool. 

The predicted Fe’ in the abiotic run of the kinetic model was quite low, (~8×10-13 M) but 

still much higher than the concentration predicted by thermodynamic modeling. 

 Under buffered conditions Fe’ should remain fairly constant. The buffering 

capacity of the system was tested in two ways, first the Fe’ concentration was calculated 

in the high and low FeDFB conditions and compared to the abiotic conditions. In both the 

abiotic and high FeDFB condition Fe’ remained constant at ~8×10-13 M, and in the low 

FeDFB condition it averaged ~5×10-13 M, decreasing slightly over time. The supply rate 

of the ligand was compared to the uptake rate by phytoplankton as a second means of 

assessing the buffering capacity. The rates of  FeDFB and FeEDTA disassociation and 

Fe(II) oxidation were summed and this combined rate was compared to the instantaneous 

uptake rate of cells (the derivative of intracellular concentration with respect to time). In 

both the high and low FeDFB conditions the rate of uptake was considerably less than the 

disassociation rate, suggesting that the FeDFB ligand was sufficient for the low rate of 

cellular uptake that was occurring.  

 The maximum yields reported for T. weissflogii are around 10-5-10-6 so it appears 

DFB can buffer a dense culture, although it does so at an [Fe’] that is insufficient for 

appreciable growth. In the model it took between ~ 1010-1011 cells mL-1 to exceed the 

buffering capacity of FeDFB. This effect is shown in Figure 5.  Under these “blown 
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buffer” conditions Fe’ was proportional to the initial concentration of the FeDFB 

complex: Fe’ equaled ~1×10-15 M  in low FeDFB or ~1×10-17 M  in high FeDFB and the 

uptake rate matched the disassociation rate. 

Discussion 

The bioavailability of siderophore bound Fe to Synechococcus 
 Siderophore bound Fe is bioavailable if a cell both can take up Fe from the 

complex and use that Fe for growth.  Our experiments did not measure Fe uptake from 

the siderophore complex but instead focused on initial growth. A previous study 

measured Fe uptake by axenic cultures of Synechococcus sp. CCMP1334  (equivalent to 

Synechococcus sp. WH7803) over 2d, finding that the cyanobacterium was able to take 

up Fe bound to DFB (Hutchins et al., 1999). Several other field studies that found DFB 

limited the short term Fe uptake by medium (2-5 µm) and large (<5µm) phytoplankton 

and to a lesser degree limited uptake by the total planktonic community (phytoplankton 

and heterotrophic microorganisms) (Wells et al., 1994; Wells, 1999; Wells and Trick, 

2004). Our results indicate Synechococcus is not able to grow well in the presence of 

DFB bound Fe and unbound DFB. At most light levels and DFB concentrations the cells 

did not grow. The only growth observed was at very low light levels, and it was not a true 

measure of bioavailibiltiy because the culture was not transferred multiple times, beyond 

the point when all stored Fe was exhausted. Even at the lowest DFB concentrations, 

growth looked similar to the Fe- treatment, suggesting DFB was at best, not very 

bioavailable. It is remarkable that Synechococcus can take up DFB bound Fe but cannot 
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use it for growth  This suggests that Fe in FeDFB complex is not utilized once 

transported, or alternatively that the ligand DFB interferes with growth in some way. 

Desferrioxamine induced growth inhibition in Synechococcus 
 In both field incubations and laboratory experiments DFB consistently inhibited 

the growth of Synechococcus but the cause of this limitation is unclear. The most 

parsimonious explanation is that adding more FeDFB decreased the amount of Fe’, but 

chemical modeling found no evidence of this. The addition of purely uncomplexed DFB 

decreases the Fe’ concentration, however in all the experiments presented here DFB 

exceeded Fe by a fixed ratio. At chemical equilibrium, this would mean that the Fe’ was 

constant at all additions (Table 2). However, in a dynamic biological system, uptake 

could have altered Fe’; to address this possibility the system was also modeled kinetically 

(Table 3, 4, Figure 5).  The kinetic modeling of DFB suggests that DFB has a large 

buffering capacity in part because it holds Fe’ at such low concentrations (discussed 

later). This buffering acts to keep the [Fe’] fairly constant at different concentrations of 

FeDFB. Even if the buffering capacity of DFB were exceeded, additional FeDFB would 

increase, not decrease Fe’, so extracellular decreases in Fe’ cannot explain the growth 

limitation observed. Both kinetic and thermodynamic modeling of Fe’ in the medium 

cannot explain the growth inhibition caused by DFB.  

 An experiment with the diatom T. oceanica found the same sort of concentration-

dependent growth inhibition that we observed in Synechococcus.  T. oceanica differs 

from Synechococcus because it has the ability to take up siderophore DFB bound Fe by 

means of cell surface reductases (Maldonado and Price, 2001).  FeDFB is bioavailable to 
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T. oceanica, but its growth rate was inhibited when increasing amounts of Fe:DFB were 

added at a fixed ratio. Using thermodynamic modeling, Maldonado and Price (2001) 

estimated that Fe’ was constant at all concentrations. It appears the inhibitory effect of 

DFB occurs in both eukaryotic and prokaryotic phytoplankton although Synechococcus 

appears to be more sensitive to growth inhibition.  

 DFB has recently been shown to bind Co(III) and Mn(III) with high affinity 

(Duckworth and Sposito, 2005; ). To determine if  DFB induced metal co-limitation, cells 

were cultured in DFB then either Fe(III) or Mn(II) was added to see if growth could be 

recovered. Although Mn(II) is the predominate form of Mn in seawater, DFB can catalize 

Mn oxidation under some conditions (Duckworth and Sposito, 2005; Duckworth et al., 

2009).  Mn is present at nanomolar concentrations in the ocean and does not normally 

limit growth (Bruland et al., 1994). By contrast, Co is found at picomolar concentrations 

and can limit phytoplankton (Saito and Moffett, 2001). The speciation of Co is complex, 

it exists predominantly in the Co(II) state but Co(III) ligands are found in the ocean 

(Saito et al., 2005). In the rescue experiment (Figure 4) the addition of Fe alone was able 

to revive cells limited by DFB while the addition of Mn(II) was not. This suggests that Fe 

is the primary metal involved in growth limitation by DFB. It also indicated that unbound 

DFB does not kill cells but rather has a bacteriostatic effect that can be alleviated by 

complexing all unbound DFB and replenishing Fe. 

 The physiological effects of siderophores were examined further by looking at the 

influence of light on the growth of Synechococcus.  When cells were grown at light levels 

above 10 µE m-2 s-1 higher concentrations of DFB inhibited growth more acutely and 
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caused bleaching. In one sense this is surprising, higher light levels typically require 

lower Fe quotas (Sunda and Huntsman, 1997) so under Fe limitation strains grown in 

high light should have an advantage, but they do not. Under Fe limitation Synechococcus 

may experience increased oxidative stress and in fact, some Fe stress proteins are known 

to be expressed under oxidative stress (Exss-Sonne et al., 2000; Yousef et al., 2003; 

Dwivedi et al., 1997). DFB has been shown to convert superoxide into long- lived 

nitroxide radicals potentially making increasing oxidative stress (Davies et al., 1987). 

However, an experiment using superoxide dismutase to decrease superoxide or xanthine 

and xanthine oxidase to generate superoxide, found no significant differences in the DFB 

growth effect (data not shown). The decline in growth rate with increasing light intensity 

is  ihe opposite of what is seen in both Fe replete and Fe limited cultures, this suggests 

the inhibitory effect of DFB is distinct from natural Fe starvation. 

 An alternative explanation of the DFB effect is that above some threshold 

concentration the unbound ligand begins to interfere with Fe(III)-containing proteins. 

Intracellular proteins that contain Fe(III) are a possible target but the potential mechanism 

of entry into the cell is unclear; Synechococcus and Prochlorococcus can take up organic 

carbon (Mary et al., 2008; Moore et al., 2005; Paoli et al., 2008). There is also evidence 

showing Prochlorococcus sp. MED4 has a high sensitivity to the antibiotics ciprofloxacin 

and rifampcin, suggesting that it may transport small molecules more readily than other 

gram negative bacteria (Osborne, pers. comm. 2009). Full growth inhibition by DFB 

occurs at concentrations below the minimum inhibitory concentrations of these 

antibiotics. In mammals, intracellular DFB inhibits ribonucleotide reductase, arresting 
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cells in S-phase (Nyholm et al., 1993).  Cyanobacteria use a vitamin B12-containing 

ribonucleotide reductase (Gleason and Olszewski, 2002) and S-phase arrest did not occur 

in Synechococcus sp. WH8102  (data not shown). However, Synechococcus possesses Fe-

containing photosystem proteins that present additional targets for inactivation by 

intracellular DFB. Even if DFB did not enter the cytoplasm it may still disrupt Fe-

containing proteins. Unbound DFB has a mass of 560.69 daltons so it could potentially 

pass through porins and interfere with Fe(III)-containing proteins in the periplasm, 

cytoplasmic membrane or outer membrane. 

 

The stimulation of heterotrophic bacteria by desferrioxamine B 
 In bottle incubations DFB inhibited the growth of Synechococcus while 

simultaneously stimulating the growth of a group of heterotrophic bacteria in a 

concentration-dependent manner.  The difference between the two populations is 

pronounced and it suggests heterotrophic bacteria may benefit from siderophores at the 

expense of cyanobacteria. This is consistent with work in six strains of marine 

heterotrophs showing that siderophore-bound Fe is taken up and that the addition of DFB 

can increase growth rates in the presence of the EDTA bound Fe (Granger and Price, 

1999). There are several plausible explanations for enhanced growth in heterotrophic 

bacteria. It is possible FeDFB provided Fe needed for heterotrophic growth, although the 

addition of FeEDTA did not stimulate growth. It is also possible that DFB was used as a 

carbon source by the heterotrophic bacteria in our bottle incubations. Since structurally 

similar ferrioxamine E and G are present in the ocean (Mawji et al., 2008), the 
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consumption of siderophores is plausible. Alternatively, DFB may have indirectly 

stimulated heterotroph growth. Both nutrient stress and the transition into stationary 

phase have been shown to increase the production of dissolved organic material (DOM) 

in phytoplankton. (Nagata, 2000; Myklestad et al., 1989; Myklestad, 1995; Puddu et al., 

2003). Phytoplankton inhibited by DFB could have released additional DOM into the 

medium, providing polysaccharides and amino acids for the heterotrophs. 

Chemical kinetics 
 This is, to our knowledge, the first attempt to model what happens when the 

buffering capacity of a metal ligand is exceeded by phytoplankton uptake, and it reveals 

some surprising results about buffering by strong ligands. It is surprising that DFB can 

effectively buffer Fe. DFB has an forward rate constant  (kf  =1.9×106 M-1 s-1) that is four 

orders of magnitude greater than EDTA (kf  =20  M-1 s-1), but the dissociation constants 

for the two ligands are quite similar (kd  of 1.5×10-6  s-1 and 1×10-6 s-1 respectively) 

(Witter et al., 2000; Hudson and Morel, 1990).   This means the rate DFB and EDTA can 

add Fe’ to the Fe pool is similar at a given complex concentration.  However, FeDFB 

forms more quickly than FeEDTA reducing the concentration of Fe’; this reduces the 

uptake rate of phytoplankton because uptake is dependent on [Fe’]. This dependency can 

be seen in the simplified rate equation 

! 

d[Fecell ]
dt

= kUptake[Fe' ][cells]. DFB’s strong binding 

slows the rate of cellular uptake, making it harder to exceed the buffering capacity of 

DFB. The distinction between a “blown buffer” limiting growth rate and a strong buffer 

like DFB limiting growth rate is subtle.  Under a “blown buffer” scenario, biological 

uptake outpaces chemical disassociation, this drives the Fe’ concentration below what is 
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found in a purely chemical system. In contrast, DFB chemically buffers Fe’ to such a low 

level, even in the absence of cells (8×10-13 M), that the rate of cellular uptake is 

extremely low, and in fact it is insufficient for growth. At uptake rates that low, even the 

relatively slow DFB ligand can keep up with demand. 

 The uptake rates used to model Fe’ are not specific to Synechococcus so it is 

possible that cyanobacteria could exceed the buffering capacity of the system. The first 

way a cyanobacterium could exceed the buffering capacity of DFB is to increase the total 

number of receptors competing for Fe’. This can be done by increasing cell concentration 

or by increasing the number of receptors per cell (as in Figure 5D-E), although there are 

physical limits to both. Alternatively Synechococcus may have significantly different 

kinetic rate constants than diatoms. Diatoms and have optimized their Fe transport ligand 

to values approaching the diffusion controlled limit for enzymatic efficiency. Estimates 

of 

! 

K" # "max /Lcell  (equivalent to 

! 

kcat /Km , the measure of enzymatic efficiency) for the 

diatoms Pleurochrysis carterae and T. weissflogii equal 9.7×108 and 9.4×108 M-1 s-1 

respectively, calculated from data in Hudson and Morel (1990).  It is not possible for 

cyanobacteria to improve on the efficiency of transport but their rate constants could be 

different, lowering their half saturation constant for instantaneous Fe uptake (Kρ
 ). This 

alteration would make them better able to take up Fe’ at extremely low Fe’ 

concentrations. Lowering the 

! 

kd
FeY  and the 

! 

kin  rate constants or increasing 

! 

k f
FeY  would 

decrease Kρ, potentially increasing the uptake rate at very low Fe concentrations to the 

point where the buffering capacity of DFB is exceeded. From kinetic modeling the ligand 
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system appears to be in equilibrium, but even if the buffering capacity of DFB was 

exceeded, a decrease in the Fe’ concentration cannot explain growth inhibition by DFB. 

Future directions 

 Hydroxamate siderophores have the ability to inhibit the growth of 

Synechococcus at low concentrations while simultaneously enhancing the growth of 

heterotrophic marine bacteria. The inhibitory effect raises interesting questions about the 

role of siderophores in the marine environment. What is the mechanism of growth 

inhibition in Synechococcus? Do siderophores represent a form of chemical competition 

between microbes? It is conceivable that bacteria produce siderophores, in part, to inhibit 

the growth of other bacteria or cyanobacteria in addition to acquiring Fe. Before any 

potential bacterial interactions can be investigated in detail, it is necessary to understand 

the mechanism of siderophore inhibition in Synechococcus. 
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Supplemental Figure 1  The growth rates of Synechococcus sp. WH7803 photo-
acclimated then grown in constant light at 10, 20, 40 or 70 µE m-2 s-1.  Each line repre-
sents decreasing concentrations of total Fe in the media or media containing 2:4 µM 
FeDFB. The growth rates were calculated from in vivo phycoerytherin fluorescence. 
Error bars represent standard error of 3 biological replicates.

94



 

 

 

 

 

Chapter 4 
Conclusions and future directions

95



 

96



Conclusions and future directions 

 The work presented here has begun to reveal how marine Synechococcus adapted 

their gene content and physiology in response to Fe limitation induced by low Fe 

concentrations or the presence of Fe binding siderophores.  This work builds on previous 

physiological and chemical work describing Fe acquisition by applying molecular and 

genetic methods to answer questions about adaptation of Synechococcus to Fe limitation.  

Fe limitation in marine Synechococcus  
 Prochlorococcus have a uniform Fe stress gene distribution while Synechococcus 

strains can vary in their complement of Fe stress genes. The variation in Synechococcus 

suggests that Fe may play a role in the differentiation of strains and clades. Within 

Synechococcus; Fe stress genes are more prevalent in coastal strains of Synechococcus.  

The geographical trend was also observed in the GOS metagenomic dataset. To 

understand how different clades of Synechococcus respond to Fe stress, I developed an 

imunocytochemical flow cytometry method to detect the expression of the iron stress 

protein IdiA in cells.  The assay detected Fe stress in the Costa Rica Upwelling dome and 

revealed that different population of Synechococcus with distinct Fe stress levels or IdiA 

serotype inhabit water separated vertically by just a few meters. 

  Despite higher Fe concentrations, Fe limitation may be a stronger selective force 

in coastal and upwelling environments than it is in the open ocean. The findings agree 

with chemical and biological observations finding that coastal and upwelling areas 

experience Fe limitation (Hutchins et al., 1998; Hutchins et al., 2002; Fiedler, 2002). The 

trend seen in Chapter 2 also agrees with the observation that transport genes for other 
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metals are prevalent in coastal Synechococcus sp. CC9311 (Palenik et al., 2006). It 

appears that Fe stress responses are more important under changing nutrient conditions or 

in areas where other nutrients increase transiently by mixing or upwelling.  It may be that 

there is little ecological or evolutionary value in optimizing the cell for Fe limitation in an 

environment where nitrogen or phosphate are also likely to limit growth. Of course it is 

also possible that we have yet to discover a key Fe transport system used by oligotrophic 

cyanobacteria.  

 More work needs to be done to determine the effect of Fe limitation on the 

structure of Synechococcus communities.  The assay described in Chapter 2 could be 

expanded into a general Synechococcus Fe stress assay with the production of a less 

specific IdiA antiserum developed raised against native IdiA. A less specific antiserum 

could serve as a broad screening tool but it would also allow subpopulations that were 

particularly sensitive or resistant to Fe limitation to be identified by sorting and 

sequencing their internally transcribed spacer region. Work is also needed to determine 

physiological differences in Fe acquisition by measuring the quotas, uptake rates and half 

saturation constants for marine Synechococcus strains. This could provide direct evidence 

of differences in Fe stress response and provide invaluable data for comparing and 

modeling phytoplankton growth.  

Siderophores and Synechococcus 
 Siderophores have been extensively studied in a pathogenic context but the 

bioavailibity and physiological effects of these complexes to phytoplankton and 

bacterioplankton is just beginning to be explained (Maldonado and Price, 2001; Granger 
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and Price, 1999; Hutchins et al., 1999; Wells and Trick, 2004). In the third chapter I look 

ed at the effects of a hydroxamate siderophore on a natural assemblage of plankton, 

revealing that Fe bound to an excess of DFB stimulates the growth of heterotrophic 

bacteria while simultaneously limiting the growth of Synechococcus in a dose dependent 

manner. Additional laboratory experiments with Synechococcus revealed that DFB could 

inhibit the growth of Synechococcus beyond what is observed in Fe deficient media. This 

effect occurred at concentrations as low as 20-40 nM. The effect was reversible by Fe 

addition, however it was exacerbated at increasing light intensities. The growth inhibition 

by DFB cannot be explained by extracellular decreases in Fe’ or total Fe. The possibility 

that DFB induced co-limitation by completing Mn(III) or Co(III) was examined using Fe 

and Mn additions, but no evidence for this explanation was found. One possible 

explanation for the growth inhibition is the hypothesis that DFB interferes with Fe(III) 

containing proteins in the cytoplasm, cytoplasmic membrane or periplasm. 

 My work and work by others suggest that siderophore use may not be a common 

strategy for oligotrophic picocyanobacteria. Siderophore production has been observed 

Synechococcus spp. PCC7002 and WH8101 isolated from shorelines (Van Baalen, 1962; 

Waterbury et al., 1986; Vraspir and Butler, 2009), but siderophore production has not 

been observed in oligotrophic strains and all sequenced Synechococcus strains lack the 

TonB energy system used by siderophore transporters. One report exists of 

Synechococcus sp CCMP1334 taking up Fe bound to DFB but other experiments with 

field populations have shown little Fe uptake (Wells et al., 1994; Wells, 1999; Wells and 

Trick, 2004).  From my work it appears DFB, and potentially hydroxamate siderophores 

99



in general, inhibit the growth of oligotrophic Synechococcus but benefit some 

heterotrophic marine bacteria.  

 The kinetic modeling of the DFB-EDTA ligand system in Chapter 3 is, to my 

knowledge, the first attempt to model the “blown buffer” problem in marine chemistry 

that occurs when cellular uptake exceeds the buffering capacity of a metal ligand.   The 

modeling reveals that strong ligands can have high buffering capacities by reducing Fe’ 

and indirectly limiting cellular uptake.  It also reveals the capacity cells have to lower the 

Fe’ to extrealmy low levels under Fe stress. Finally it reveals that thermodynamic 

estimates of Fe’ are not suitable for systems with more than one ligand.  These 

observations provide a framework for designing culture experiments with valid estimates 

Fe’. 

 The growth inhibition by siderophores raises interesting questions about how 

DFB interacts with the cyanobacterial cell. Future work with siderophores should attempt 

to answer this mechanistic question. Experiments looking for DFB uptake by 

radiolabeled DFB could provide direct evidence of any intracellular effect of DFB.  

Uptake by Synechococcus would raise a number of interesting questions about the role of 

siderophores in chemical competition and the possibility that Synechococcus “pirate” 

siderophores.  The effects of siderophores on co-cultures of Synechococcus and 

heterotrophic bacteria is another interesting avenue of future research. Does siderophore 

induced stress in phytoplankton benefit heterotrophic bacteria in ways that siderophores 

alone do not? Siderophores may benefit heterotrophic bacteria in multiple ways. Very 

little is known about how bacteria and cyanobacteria interact with siderophores, further 
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research may reveal that siderophores have additional functions in the environment, 

possibly even serving a role as antibiotics.
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